mimalloc/src/page-map.c
2024-12-22 14:39:57 -08:00

327 lines
13 KiB
C

/*----------------------------------------------------------------------------
Copyright (c) 2023-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "bitmap.h"
#if MI_PAGE_MAP_FLAT
// The page-map contains a byte for each 64kb slice in the address space.
// For an address `a` where `ofs = _mi_page_map[a >> 16]`:
// 0 = unused
// 1 = the slice at `a & ~0xFFFF` is a mimalloc page.
// 1 < ofs <= 127 = the slice is part of a page, starting at `(((a>>16) - ofs - 1) << 16)`.
//
// 1 byte per slice => 1 TiB address space needs a 2^14 * 2^16 = 16 MiB page map.
// A full 256 TiB address space (48 bit) needs a 4 GiB page map.
// A full 4 GiB address space (32 bit) needs only a 64 KiB page map.
mi_decl_cache_align uint8_t* _mi_page_map = NULL;
static void* mi_page_map_max_address = NULL;
static mi_memid_t mi_page_map_memid;
#define MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT MI_ARENA_SLICE_SIZE
static mi_bitmap_t* mi_page_map_commit; // one bit per committed 64 KiB entries
static void mi_page_map_ensure_committed(size_t idx, size_t slice_count);
bool _mi_page_map_init(void) {
size_t vbits = (size_t)mi_option_get_clamp(mi_option_max_vabits, 0, MI_SIZE_BITS);
if (vbits == 0) {
vbits = _mi_os_virtual_address_bits();
#if MI_ARCH_X64 // canonical address is limited to the first 128 TiB
if (vbits >= 48) { vbits = 47; }
#endif
}
// Allocate the page map and commit bits
mi_page_map_max_address = (void*)(MI_PU(1) << vbits);
const size_t page_map_size = (MI_ZU(1) << (vbits - MI_ARENA_SLICE_SHIFT));
const bool commit = (page_map_size <= 1*MI_MiB || mi_option_is_enabled(mi_option_debug_commit_full_pagemap)); // _mi_os_has_overcommit(); // commit on-access on Linux systems?
const size_t commit_bits = _mi_divide_up(page_map_size, MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT);
const size_t bitmap_size = (commit ? 0 : mi_bitmap_size(commit_bits, NULL));
const size_t reserve_size = bitmap_size + page_map_size;
uint8_t* const base = (uint8_t*)_mi_os_alloc_aligned(reserve_size, 1, commit, true /* allow large */, &mi_page_map_memid);
if (base==NULL) {
_mi_error_message(ENOMEM, "unable to reserve virtual memory for the page map (%zu KiB)\n", page_map_size / MI_KiB);
return false;
}
if (mi_page_map_memid.initially_committed && !mi_page_map_memid.initially_zero) {
_mi_warning_message("internal: the page map was committed but not zero initialized!\n");
_mi_memzero_aligned(base, reserve_size);
}
if (bitmap_size > 0) {
mi_page_map_commit = (mi_bitmap_t*)base;
_mi_os_commit(mi_page_map_commit, bitmap_size, NULL);
mi_bitmap_init(mi_page_map_commit, commit_bits, true);
}
_mi_page_map = base + bitmap_size;
// commit the first part so NULL pointers get resolved without an access violation
if (!commit) {
mi_page_map_ensure_committed(0, 1);
}
_mi_page_map[0] = 1; // so _mi_ptr_page(NULL) == NULL
mi_assert_internal(_mi_ptr_page(NULL)==NULL);
return true;
}
static void mi_page_map_ensure_committed(size_t idx, size_t slice_count) {
// is the page map area that contains the page address committed?
// we always set the commit bits so we can track what ranges are in-use.
// we only actually commit if the map wasn't committed fully already.
if (mi_page_map_commit != NULL) {
const size_t commit_idx = idx / MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT;
const size_t commit_idx_hi = (idx + slice_count - 1) / MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT;
for (size_t i = commit_idx; i <= commit_idx_hi; i++) { // per bit to avoid crossing over bitmap chunks
if (mi_bitmap_is_clear(mi_page_map_commit, i)) {
// this may race, in which case we do multiple commits (which is ok)
bool is_zero;
uint8_t* const start = _mi_page_map + (i * MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT);
const size_t size = MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT;
_mi_os_commit(start, size, &is_zero);
if (!is_zero && !mi_page_map_memid.initially_zero) { _mi_memzero(start, size); }
mi_bitmap_set(mi_page_map_commit, i);
}
}
}
#if MI_DEBUG > 0
_mi_page_map[idx] = 0;
_mi_page_map[idx+slice_count-1] = 0;
#endif
}
static size_t mi_page_map_get_idx(mi_page_t* page, uint8_t** page_start, size_t* slice_count) {
size_t page_size;
*page_start = mi_page_area(page, &page_size);
if (page_size > MI_LARGE_PAGE_SIZE) { page_size = MI_LARGE_PAGE_SIZE - MI_ARENA_SLICE_SIZE; } // furthest interior pointer
*slice_count = mi_slice_count_of_size(page_size) + (((uint8_t*)*page_start - (uint8_t*)page)/MI_ARENA_SLICE_SIZE); // add for large aligned blocks
return _mi_page_map_index(page);
}
void _mi_page_map_register(mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_internal(_mi_is_aligned(page, MI_PAGE_ALIGN));
mi_assert_internal(_mi_page_map != NULL); // should be initialized before multi-thread access!
if mi_unlikely(_mi_page_map == NULL) {
if (!_mi_page_map_init()) return;
}
mi_assert(_mi_page_map!=NULL);
uint8_t* page_start;
size_t slice_count;
const size_t idx = mi_page_map_get_idx(page, &page_start, &slice_count);
mi_page_map_ensure_committed(idx, slice_count);
// set the offsets
for (size_t i = 0; i < slice_count; i++) {
mi_assert_internal(i < 128);
_mi_page_map[idx + i] = (uint8_t)(i+1);
}
}
void _mi_page_map_unregister(mi_page_t* page) {
mi_assert_internal(_mi_page_map != NULL);
// get index and count
uint8_t* page_start;
size_t slice_count;
const size_t idx = mi_page_map_get_idx(page, &page_start, &slice_count);
// unset the offsets
_mi_memzero(_mi_page_map + idx, slice_count);
}
void _mi_page_map_unregister_range(void* start, size_t size) {
const size_t slice_count = _mi_divide_up(size, MI_ARENA_SLICE_SIZE);
const uintptr_t index = _mi_page_map_index(start);
mi_page_map_ensure_committed(index, slice_count); // we commit the range in total; todo: scan the commit bits and clear only those ranges?
_mi_memzero(&_mi_page_map[index], slice_count);
}
mi_page_t* _mi_safe_ptr_page(const void* p) {
if mi_unlikely(p >= mi_page_map_max_address) return NULL;
const uintptr_t idx = _mi_page_map_index(p);
if mi_unlikely(mi_page_map_commit != NULL && !mi_bitmap_is_set(mi_page_map_commit, idx/MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT)) return NULL;
const uintptr_t ofs = _mi_page_map[idx];
if mi_unlikely(ofs == 0) return NULL;
return (mi_page_t*)((((uintptr_t)p >> MI_ARENA_SLICE_SHIFT) - ofs + 1) << MI_ARENA_SLICE_SHIFT);
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return (_mi_safe_ptr_page(p) != NULL);
}
#else
// A 2-level page map
mi_decl_cache_align mi_page_t*** _mi_page_map;
static void* mi_page_map_max_address;
static mi_memid_t mi_page_map_memid;
static _Atomic(mi_bfield_t) mi_page_map_commit;
static mi_page_t** mi_page_map_ensure_at(size_t idx);
static inline void mi_page_map_set_range(mi_page_t* page, size_t idx, size_t sub_idx, size_t slice_count);
bool _mi_page_map_init(void) {
size_t vbits = (size_t)mi_option_get_clamp(mi_option_max_vabits, 0, MI_SIZE_BITS);
if (vbits == 0) {
vbits = _mi_os_virtual_address_bits();
#if MI_ARCH_X64 // canonical address is limited to the first 128 TiB
if (vbits >= 48) { vbits = 47; }
#endif
}
// Allocate the page map and commit bits
mi_assert(MI_MAX_VABITS >= vbits);
mi_page_map_max_address = (void*)(MI_PU(1) << vbits);
const size_t page_map_count = (MI_ZU(1) << (vbits - MI_PAGE_MAP_SUB_SHIFT - MI_ARENA_SLICE_SHIFT));
mi_assert(page_map_count <= MI_PAGE_MAP_COUNT);
const size_t os_page_size = _mi_os_page_size();
const size_t page_map_size = _mi_align_up( page_map_count * sizeof(mi_page_t**), os_page_size);
const size_t reserve_size = page_map_size + os_page_size;
const bool commit = page_map_size <= 64*MI_KiB || mi_option_is_enabled(mi_option_debug_commit_full_pagemap); // _mi_os_has_overcommit(); // commit on-access on Linux systems?
_mi_page_map = (mi_page_t***)_mi_os_alloc_aligned(reserve_size, 1, commit, true /* allow large */, &mi_page_map_memid);
if (_mi_page_map==NULL) {
_mi_error_message(ENOMEM, "unable to reserve virtual memory for the page map (%zu KiB)\n", page_map_size / MI_KiB);
return false;
}
if (mi_page_map_memid.initially_committed && !mi_page_map_memid.initially_zero) {
_mi_warning_message("internal: the page map was committed but not zero initialized!\n");
_mi_memzero_aligned(_mi_page_map, page_map_size);
}
mi_atomic_store_release(&mi_page_map_commit, (commit ? ~MI_ZU(0) : MI_ZU(0)));
// commit the first part so NULL pointers get resolved without an access violation
mi_page_map_ensure_at(0);
// note: for the NULL range we only commit one OS page
// mi_page_map_set_range(NULL, 0, 0, 1);
_mi_page_map[0] = (mi_page_t**)((uint8_t*)_mi_page_map + page_map_size);
if (!mi_page_map_memid.initially_committed) {
_mi_os_commit(_mi_page_map[0], os_page_size, NULL);
}
_mi_page_map[0][0] = NULL;
mi_assert_internal(_mi_ptr_page(NULL)==NULL);
return true;
}
#define MI_PAGE_MAP_ENTRIES_PER_CBIT (MI_PAGE_MAP_COUNT / MI_BFIELD_BITS)
static inline bool mi_page_map_is_committed(size_t idx, size_t* pbit_idx) {
mi_bfield_t commit = mi_atomic_load_relaxed(&mi_page_map_commit);
const size_t bit_idx = idx/MI_PAGE_MAP_ENTRIES_PER_CBIT;
mi_assert_internal(bit_idx < MI_BFIELD_BITS);
if (pbit_idx != NULL) { *pbit_idx = bit_idx; }
return ((commit & (MI_ZU(1) << bit_idx)) != 0);
}
static mi_page_t** mi_page_map_ensure_committed(size_t idx) {
size_t bit_idx;
if mi_unlikely(!mi_page_map_is_committed(idx, &bit_idx)) {
uint8_t* start = (uint8_t*)&_mi_page_map[bit_idx * MI_PAGE_MAP_ENTRIES_PER_CBIT];
_mi_os_commit(start, MI_PAGE_MAP_ENTRIES_PER_CBIT * sizeof(mi_page_t**), NULL);
mi_atomic_or_acq_rel(&mi_page_map_commit, MI_ZU(1) << bit_idx);
}
return _mi_page_map[idx];
}
static mi_page_t** mi_page_map_ensure_at(size_t idx) {
mi_page_t** sub = mi_page_map_ensure_committed(idx);
if mi_unlikely(sub == NULL) {
// sub map not yet allocated, alloc now
mi_memid_t memid;
sub = (mi_page_t**)_mi_os_alloc(MI_PAGE_MAP_SUB_COUNT * sizeof(mi_page_t*), &memid);
mi_page_t** expect = NULL;
if (!mi_atomic_cas_strong_acq_rel(((_Atomic(mi_page_t**)*)&_mi_page_map[idx]), &expect, sub)) {
// another thread already allocated it.. free and continue
_mi_os_free(sub, MI_PAGE_MAP_SUB_COUNT * sizeof(mi_page_t*), memid);
sub = expect;
mi_assert_internal(sub!=NULL);
}
if (sub == NULL) {
_mi_error_message(EFAULT, "internal error: unable to extend the page map\n");
}
}
return sub;
}
static void mi_page_map_set_range(mi_page_t* page, size_t idx, size_t sub_idx, size_t slice_count) {
// is the page map area that contains the page address committed?
while (slice_count > 0) {
mi_page_t** sub = mi_page_map_ensure_at(idx);
// set the offsets for the page
while (sub_idx < MI_PAGE_MAP_SUB_COUNT) {
sub[sub_idx] = page;
slice_count--; if (slice_count == 0) return;
sub_idx++;
}
idx++; // potentially wrap around to the next idx
sub_idx = 0;
}
}
static size_t mi_page_map_get_idx(mi_page_t* page, size_t* sub_idx, size_t* slice_count) {
size_t page_size;
uint8_t* page_start = mi_page_area(page, &page_size);
if (page_size > MI_LARGE_PAGE_SIZE) { page_size = MI_LARGE_PAGE_SIZE - MI_ARENA_SLICE_SIZE; } // furthest interior pointer
*slice_count = mi_slice_count_of_size(page_size) + ((page_start - (uint8_t*)page)/MI_ARENA_SLICE_SIZE); // add for large aligned blocks
return _mi_page_map_index(page, sub_idx);
}
void _mi_page_map_register(mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_internal(_mi_is_aligned(page, MI_PAGE_ALIGN));
mi_assert_internal(_mi_page_map != NULL); // should be initialized before multi-thread access!
if mi_unlikely(_mi_page_map == NULL) {
if (!_mi_page_map_init()) return;
}
mi_assert(_mi_page_map!=NULL);
size_t slice_count;
size_t sub_idx;
const size_t idx = mi_page_map_get_idx(page, &sub_idx, &slice_count);
mi_page_map_set_range(page, idx, sub_idx, slice_count);
}
void _mi_page_map_unregister(mi_page_t* page) {
mi_assert_internal(_mi_page_map != NULL);
// get index and count
size_t slice_count;
size_t sub_idx;
const size_t idx = mi_page_map_get_idx(page, &sub_idx, &slice_count);
// unset the offsets
mi_page_map_set_range(page, idx, sub_idx, slice_count);
}
void _mi_page_map_unregister_range(void* start, size_t size) {
const size_t slice_count = _mi_divide_up(size, MI_ARENA_SLICE_SIZE);
size_t sub_idx;
const uintptr_t idx = _mi_page_map_index(start, &sub_idx);
mi_page_map_set_range(NULL, idx, sub_idx, slice_count); // todo: avoid committing if not already committed?
}
mi_page_t* _mi_safe_ptr_page(const void* p) {
if mi_unlikely(p >= mi_page_map_max_address) return NULL;
size_t sub_idx;
const size_t idx = _mi_page_map_index(p,&sub_idx);
if mi_unlikely(!mi_page_map_is_committed(idx,NULL)) return NULL;
mi_page_t** const sub = _mi_page_map[idx];
if mi_unlikely(sub==NULL) return NULL;
return sub[sub_idx];
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return (_mi_safe_ptr_page(p) != NULL);
}
#endif