/*---------------------------------------------------------------------------- Copyright (c) 2023-2024, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" #include "mimalloc/internal.h" #include "bitmap.h" #if MI_PAGE_MAP_FLAT // The page-map contains a byte for each 64kb slice in the address space. // For an address `a` where `ofs = _mi_page_map[a >> 16]`: // 0 = unused // 1 = the slice at `a & ~0xFFFF` is a mimalloc page. // 1 < ofs <= 127 = the slice is part of a page, starting at `(((a>>16) - ofs - 1) << 16)`. // // 1 byte per slice => 1 TiB address space needs a 2^14 * 2^16 = 16 MiB page map. // A full 256 TiB address space (48 bit) needs a 4 GiB page map. // A full 4 GiB address space (32 bit) needs only a 64 KiB page map. mi_decl_cache_align uint8_t* _mi_page_map = NULL; static void* mi_page_map_max_address = NULL; static mi_memid_t mi_page_map_memid; #define MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT MI_ARENA_SLICE_SIZE static mi_bitmap_t* mi_page_map_commit; // one bit per committed 64 KiB entries static void mi_page_map_ensure_committed(size_t idx, size_t slice_count); bool _mi_page_map_init(void) { size_t vbits = (size_t)mi_option_get_clamp(mi_option_max_vabits, 0, MI_SIZE_BITS); if (vbits == 0) { vbits = _mi_os_virtual_address_bits(); #if MI_ARCH_X64 // canonical address is limited to the first 128 TiB if (vbits >= 48) { vbits = 47; } #endif } // Allocate the page map and commit bits mi_page_map_max_address = (void*)(MI_PU(1) << vbits); const size_t page_map_size = (MI_ZU(1) << (vbits - MI_ARENA_SLICE_SHIFT)); const bool commit = (page_map_size <= 1*MI_MiB || mi_option_is_enabled(mi_option_debug_commit_full_pagemap)); // _mi_os_has_overcommit(); // commit on-access on Linux systems? const size_t commit_bits = _mi_divide_up(page_map_size, MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT); const size_t bitmap_size = (commit ? 0 : mi_bitmap_size(commit_bits, NULL)); const size_t reserve_size = bitmap_size + page_map_size; uint8_t* const base = (uint8_t*)_mi_os_alloc_aligned(reserve_size, 1, commit, true /* allow large */, &mi_page_map_memid); if (base==NULL) { _mi_error_message(ENOMEM, "unable to reserve virtual memory for the page map (%zu KiB)\n", page_map_size / MI_KiB); return false; } if (mi_page_map_memid.initially_committed && !mi_page_map_memid.initially_zero) { _mi_warning_message("internal: the page map was committed but not zero initialized!\n"); _mi_memzero_aligned(base, reserve_size); } if (bitmap_size > 0) { mi_page_map_commit = (mi_bitmap_t*)base; _mi_os_commit(mi_page_map_commit, bitmap_size, NULL); mi_bitmap_init(mi_page_map_commit, commit_bits, true); } _mi_page_map = base + bitmap_size; // commit the first part so NULL pointers get resolved without an access violation if (!commit) { mi_page_map_ensure_committed(0, 1); } _mi_page_map[0] = 1; // so _mi_ptr_page(NULL) == NULL mi_assert_internal(_mi_ptr_page(NULL)==NULL); return true; } static void mi_page_map_ensure_committed(size_t idx, size_t slice_count) { // is the page map area that contains the page address committed? // we always set the commit bits so we can track what ranges are in-use. // we only actually commit if the map wasn't committed fully already. if (mi_page_map_commit != NULL) { const size_t commit_idx = idx / MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT; const size_t commit_idx_hi = (idx + slice_count - 1) / MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT; for (size_t i = commit_idx; i <= commit_idx_hi; i++) { // per bit to avoid crossing over bitmap chunks if (mi_bitmap_is_clear(mi_page_map_commit, i)) { // this may race, in which case we do multiple commits (which is ok) bool is_zero; uint8_t* const start = _mi_page_map + (i * MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT); const size_t size = MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT; _mi_os_commit(start, size, &is_zero); if (!is_zero && !mi_page_map_memid.initially_zero) { _mi_memzero(start, size); } mi_bitmap_set(mi_page_map_commit, i); } } } #if MI_DEBUG > 0 _mi_page_map[idx] = 0; _mi_page_map[idx+slice_count-1] = 0; #endif } static size_t mi_page_map_get_idx(mi_page_t* page, uint8_t** page_start, size_t* slice_count) { size_t page_size; *page_start = mi_page_area(page, &page_size); if (page_size > MI_LARGE_PAGE_SIZE) { page_size = MI_LARGE_PAGE_SIZE - MI_ARENA_SLICE_SIZE; } // furthest interior pointer *slice_count = mi_slice_count_of_size(page_size) + (((uint8_t*)*page_start - (uint8_t*)page)/MI_ARENA_SLICE_SIZE); // add for large aligned blocks return _mi_page_map_index(page); } void _mi_page_map_register(mi_page_t* page) { mi_assert_internal(page != NULL); mi_assert_internal(_mi_is_aligned(page, MI_PAGE_ALIGN)); mi_assert_internal(_mi_page_map != NULL); // should be initialized before multi-thread access! if mi_unlikely(_mi_page_map == NULL) { if (!_mi_page_map_init()) return; } mi_assert(_mi_page_map!=NULL); uint8_t* page_start; size_t slice_count; const size_t idx = mi_page_map_get_idx(page, &page_start, &slice_count); mi_page_map_ensure_committed(idx, slice_count); // set the offsets for (size_t i = 0; i < slice_count; i++) { mi_assert_internal(i < 128); _mi_page_map[idx + i] = (uint8_t)(i+1); } } void _mi_page_map_unregister(mi_page_t* page) { mi_assert_internal(_mi_page_map != NULL); // get index and count uint8_t* page_start; size_t slice_count; const size_t idx = mi_page_map_get_idx(page, &page_start, &slice_count); // unset the offsets _mi_memzero(_mi_page_map + idx, slice_count); } void _mi_page_map_unregister_range(void* start, size_t size) { const size_t slice_count = _mi_divide_up(size, MI_ARENA_SLICE_SIZE); const uintptr_t index = _mi_page_map_index(start); mi_page_map_ensure_committed(index, slice_count); // we commit the range in total; todo: scan the commit bits and clear only those ranges? _mi_memzero(&_mi_page_map[index], slice_count); } mi_page_t* _mi_safe_ptr_page(const void* p) { if mi_unlikely(p >= mi_page_map_max_address) return NULL; const uintptr_t idx = _mi_page_map_index(p); if mi_unlikely(mi_page_map_commit != NULL && !mi_bitmap_is_set(mi_page_map_commit, idx/MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT)) return NULL; const uintptr_t ofs = _mi_page_map[idx]; if mi_unlikely(ofs == 0) return NULL; return (mi_page_t*)((((uintptr_t)p >> MI_ARENA_SLICE_SHIFT) - ofs + 1) << MI_ARENA_SLICE_SHIFT); } mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept { return (_mi_safe_ptr_page(p) != NULL); } #else // A 2-level page map mi_decl_cache_align mi_page_t*** _mi_page_map; static void* mi_page_map_max_address; static mi_memid_t mi_page_map_memid; static _Atomic(mi_bfield_t) mi_page_map_commit; static mi_page_t** mi_page_map_ensure_at(size_t idx); static inline void mi_page_map_set_range(mi_page_t* page, size_t idx, size_t sub_idx, size_t slice_count); bool _mi_page_map_init(void) { size_t vbits = (size_t)mi_option_get_clamp(mi_option_max_vabits, 0, MI_SIZE_BITS); if (vbits == 0) { vbits = _mi_os_virtual_address_bits(); #if MI_ARCH_X64 // canonical address is limited to the first 128 TiB if (vbits >= 48) { vbits = 47; } #endif } // Allocate the page map and commit bits mi_assert(MI_MAX_VABITS >= vbits); mi_page_map_max_address = (void*)(MI_PU(1) << vbits); const size_t page_map_count = (MI_ZU(1) << (vbits - MI_PAGE_MAP_SUB_SHIFT - MI_ARENA_SLICE_SHIFT)); mi_assert(page_map_count <= MI_PAGE_MAP_COUNT); const size_t os_page_size = _mi_os_page_size(); const size_t page_map_size = _mi_align_up( page_map_count * sizeof(mi_page_t**), os_page_size); const size_t reserve_size = page_map_size + os_page_size; const bool commit = page_map_size <= 64*MI_KiB || mi_option_is_enabled(mi_option_debug_commit_full_pagemap); // _mi_os_has_overcommit(); // commit on-access on Linux systems? _mi_page_map = (mi_page_t***)_mi_os_alloc_aligned(reserve_size, 1, commit, true /* allow large */, &mi_page_map_memid); if (_mi_page_map==NULL) { _mi_error_message(ENOMEM, "unable to reserve virtual memory for the page map (%zu KiB)\n", page_map_size / MI_KiB); return false; } if (mi_page_map_memid.initially_committed && !mi_page_map_memid.initially_zero) { _mi_warning_message("internal: the page map was committed but not zero initialized!\n"); _mi_memzero_aligned(_mi_page_map, page_map_size); } mi_atomic_store_release(&mi_page_map_commit, (commit ? ~MI_ZU(0) : MI_ZU(0))); // commit the first part so NULL pointers get resolved without an access violation mi_page_map_ensure_at(0); // note: for the NULL range we only commit one OS page // mi_page_map_set_range(NULL, 0, 0, 1); _mi_page_map[0] = (mi_page_t**)((uint8_t*)_mi_page_map + page_map_size); if (!mi_page_map_memid.initially_committed) { _mi_os_commit(_mi_page_map[0], os_page_size, NULL); } _mi_page_map[0][0] = NULL; mi_assert_internal(_mi_ptr_page(NULL)==NULL); return true; } #define MI_PAGE_MAP_ENTRIES_PER_CBIT (MI_PAGE_MAP_COUNT / MI_BFIELD_BITS) static inline bool mi_page_map_is_committed(size_t idx, size_t* pbit_idx) { mi_bfield_t commit = mi_atomic_load_relaxed(&mi_page_map_commit); const size_t bit_idx = idx/MI_PAGE_MAP_ENTRIES_PER_CBIT; mi_assert_internal(bit_idx < MI_BFIELD_BITS); if (pbit_idx != NULL) { *pbit_idx = bit_idx; } return ((commit & (MI_ZU(1) << bit_idx)) != 0); } static mi_page_t** mi_page_map_ensure_committed(size_t idx) { size_t bit_idx; if mi_unlikely(!mi_page_map_is_committed(idx, &bit_idx)) { uint8_t* start = (uint8_t*)&_mi_page_map[bit_idx * MI_PAGE_MAP_ENTRIES_PER_CBIT]; _mi_os_commit(start, MI_PAGE_MAP_ENTRIES_PER_CBIT * sizeof(mi_page_t**), NULL); mi_atomic_or_acq_rel(&mi_page_map_commit, MI_ZU(1) << bit_idx); } return _mi_page_map[idx]; } static mi_page_t** mi_page_map_ensure_at(size_t idx) { mi_page_t** sub = mi_page_map_ensure_committed(idx); if mi_unlikely(sub == NULL) { // sub map not yet allocated, alloc now mi_memid_t memid; sub = (mi_page_t**)_mi_os_alloc(MI_PAGE_MAP_SUB_COUNT * sizeof(mi_page_t*), &memid); mi_page_t** expect = NULL; if (!mi_atomic_cas_strong_acq_rel(((_Atomic(mi_page_t**)*)&_mi_page_map[idx]), &expect, sub)) { // another thread already allocated it.. free and continue _mi_os_free(sub, MI_PAGE_MAP_SUB_COUNT * sizeof(mi_page_t*), memid); sub = expect; mi_assert_internal(sub!=NULL); } if (sub == NULL) { _mi_error_message(EFAULT, "internal error: unable to extend the page map\n"); } } return sub; } static void mi_page_map_set_range(mi_page_t* page, size_t idx, size_t sub_idx, size_t slice_count) { // is the page map area that contains the page address committed? while (slice_count > 0) { mi_page_t** sub = mi_page_map_ensure_at(idx); // set the offsets for the page while (sub_idx < MI_PAGE_MAP_SUB_COUNT) { sub[sub_idx] = page; slice_count--; if (slice_count == 0) return; sub_idx++; } idx++; // potentially wrap around to the next idx sub_idx = 0; } } static size_t mi_page_map_get_idx(mi_page_t* page, size_t* sub_idx, size_t* slice_count) { size_t page_size; uint8_t* page_start = mi_page_area(page, &page_size); if (page_size > MI_LARGE_PAGE_SIZE) { page_size = MI_LARGE_PAGE_SIZE - MI_ARENA_SLICE_SIZE; } // furthest interior pointer *slice_count = mi_slice_count_of_size(page_size) + ((page_start - (uint8_t*)page)/MI_ARENA_SLICE_SIZE); // add for large aligned blocks return _mi_page_map_index(page, sub_idx); } void _mi_page_map_register(mi_page_t* page) { mi_assert_internal(page != NULL); mi_assert_internal(_mi_is_aligned(page, MI_PAGE_ALIGN)); mi_assert_internal(_mi_page_map != NULL); // should be initialized before multi-thread access! if mi_unlikely(_mi_page_map == NULL) { if (!_mi_page_map_init()) return; } mi_assert(_mi_page_map!=NULL); size_t slice_count; size_t sub_idx; const size_t idx = mi_page_map_get_idx(page, &sub_idx, &slice_count); mi_page_map_set_range(page, idx, sub_idx, slice_count); } void _mi_page_map_unregister(mi_page_t* page) { mi_assert_internal(_mi_page_map != NULL); // get index and count size_t slice_count; size_t sub_idx; const size_t idx = mi_page_map_get_idx(page, &sub_idx, &slice_count); // unset the offsets mi_page_map_set_range(page, idx, sub_idx, slice_count); } void _mi_page_map_unregister_range(void* start, size_t size) { const size_t slice_count = _mi_divide_up(size, MI_ARENA_SLICE_SIZE); size_t sub_idx; const uintptr_t idx = _mi_page_map_index(start, &sub_idx); mi_page_map_set_range(NULL, idx, sub_idx, slice_count); // todo: avoid committing if not already committed? } mi_page_t* _mi_safe_ptr_page(const void* p) { if mi_unlikely(p >= mi_page_map_max_address) return NULL; size_t sub_idx; const size_t idx = _mi_page_map_index(p,&sub_idx); if mi_unlikely(!mi_page_map_is_committed(idx,NULL)) return NULL; mi_page_t** const sub = _mi_page_map[idx]; if mi_unlikely(sub==NULL) return NULL; return sub[sub_idx]; } mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept { return (_mi_safe_ptr_page(p) != NULL); } #endif