mimalloc/include/mimalloc/types.h

653 lines
32 KiB
C

/* ----------------------------------------------------------------------------
Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MI_TYPES_H
#define MI_TYPES_H
// --------------------------------------------------------------------------
// This file contains the main type definitions for mimalloc:
// mi_heap_t : all data for a thread-local heap, contains
// lists of all managed heap pages.
// mi_page_t : a mimalloc page (usually 64KiB or 512KiB) from
// where objects of a single size are allocated.
// Note: we write "OS page" for OS memory pages while
// using plain "page" for mimalloc pages (`mi_page_t`).
// --------------------------------------------------------------------------
#include <stddef.h> // ptrdiff_t
#include <stdint.h> // uintptr_t, uint16_t, etc
#include <errno.h> // error codes
#include "bits.h" // size defines (MI_INTPTR_SIZE etc), bit operations
#include "atomic.h" // _Atomic primitives
// Minimal alignment necessary. On most platforms 16 bytes are needed
// due to SSE registers for example. This must be at least `sizeof(void*)`
#ifndef MI_MAX_ALIGN_SIZE
#define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t)
#endif
// ------------------------------------------------------
// Variants
// ------------------------------------------------------
// Define NDEBUG in the release version to disable assertions.
// #define NDEBUG
// Define MI_TRACK_<tool> to enable tracking support
// #define MI_TRACK_VALGRIND 1
// #define MI_TRACK_ASAN 1
// #define MI_TRACK_ETW 1
// Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance).
// #define MI_STAT 1
// Define MI_SECURE to enable security mitigations. Level 1 has minimal performance impact,
// but protects most metadata with guard pages:
// #define MI_SECURE 1 // guard page around metadata
//
// Level 2 has more performance impact but protect well against various buffer overflows
// by surrounding all mimalloc pages with guard pages:
// #define MI_SECURE 2 // guard page around each mimalloc page (can fragment VMA's with large heaps..)
//
// The next two levels can have more performance cost:
// #define MI_SECURE 3 // randomize allocations, encode free lists (detect corrupted free list (buffer overflow), and invalid pointer free)
// #define MI_SECURE 4 // checks for double free. (may be more expensive)
#if !defined(MI_SECURE)
#define MI_SECURE 0
#endif
// Define MI_DEBUG for debug mode
// #define MI_DEBUG 1 // basic assertion checks and statistics, check double free, corrupted free list, and invalid pointer free.
// #define MI_DEBUG 2 // + internal assertion checks
// #define MI_DEBUG 3 // + extensive internal invariant checking (cmake -DMI_DEBUG_FULL=ON)
#if !defined(MI_DEBUG)
#if !defined(NDEBUG) || defined(_DEBUG)
#define MI_DEBUG 2
#else
#define MI_DEBUG 0
#endif
#endif
// Use guard pages behind objects of a certain size (set by the MIMALLOC_DEBUG_GUARDED_MIN/MAX options)
// Padding should be disabled when using guard pages
// #define MI_GUARDED 1
#if defined(MI_GUARDED)
#define MI_PADDING 0
#endif
// Reserve extra padding at the end of each block to be more resilient against heap block overflows.
// The padding can detect buffer overflow on free.
#if !defined(MI_PADDING) && (MI_SECURE>=3 || MI_DEBUG>=1 || (MI_TRACK_VALGRIND || MI_TRACK_ASAN || MI_TRACK_ETW))
#define MI_PADDING 1
#endif
// Check padding bytes; allows byte-precise buffer overflow detection
#if !defined(MI_PADDING_CHECK) && MI_PADDING && (MI_SECURE>=3 || MI_DEBUG>=1)
#define MI_PADDING_CHECK 1
#endif
// Encoded free lists allow detection of corrupted free lists
// and can detect buffer overflows, modify after free, and double `free`s.
#if (MI_SECURE>=3 || MI_DEBUG>=1)
#define MI_ENCODE_FREELIST 1
#endif
// Enable large pages for objects between 64KiB and 256KiB.
// Disabled by default as for many workloads the block sizes above 64 KiB are quite random which can lead to too many partially used large pages.
#ifndef MI_ENABLE_LARGE_PAGES
#define MI_ENABLE_LARGE_PAGES 0
#endif
// --------------------------------------------------------------
// Sizes of internal data-structures
// (comments specify sizes on 64-bit, usually 32-bit is halved)
// --------------------------------------------------------------
// Sizes are for 64-bit
#ifndef MI_ARENA_SLICE_SHIFT
#ifdef MI_SMALL_PAGE_SHIFT // backward compatibility
#define MI_ARENA_SLICE_SHIFT MI_SMALL_PAGE_SHIFT
#else
#define MI_ARENA_SLICE_SHIFT (13 + MI_SIZE_SHIFT) // 64 KiB (32 KiB on 32-bit)
#endif
#endif
#ifndef MI_BCHUNK_BITS_SHIFT
#define MI_BCHUNK_BITS_SHIFT (6 + MI_SIZE_SHIFT) // optimized for 512 bits per chunk (avx512)
#endif
#define MI_BCHUNK_BITS (1 << MI_BCHUNK_BITS_SHIFT) // sub-bitmaps are "bchunks" of 512 bits
#define MI_ARENA_SLICE_SIZE (MI_ZU(1) << MI_ARENA_SLICE_SHIFT) // arena's allocate in slices of 64 KiB
#define MI_ARENA_SLICE_ALIGN (MI_ARENA_SLICE_SIZE)
#define MI_ARENA_MIN_OBJ_SLICES (1)
#define MI_ARENA_MAX_OBJ_SLICES (MI_BCHUNK_BITS) // 32 MiB (for now, cannot cross chunk boundaries)
#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_MIN_OBJ_SLICES * MI_ARENA_SLICE_SIZE)
#define MI_ARENA_MAX_OBJ_SIZE (MI_ARENA_MAX_OBJ_SLICES * MI_ARENA_SLICE_SIZE)
#define MI_SMALL_PAGE_SIZE MI_ARENA_MIN_OBJ_SIZE // 64 KiB
#define MI_MEDIUM_PAGE_SIZE (8*MI_SMALL_PAGE_SIZE) // 512 KiB (=byte in the bchunk bitmap)
#define MI_LARGE_PAGE_SIZE (MI_SIZE_SIZE*MI_MEDIUM_PAGE_SIZE) // 4 MiB (=word in the bchunk bitmap)
// Maximum number of size classes. (spaced exponentially in 12.5% increments)
#define MI_BIN_HUGE (73U)
#define MI_BIN_FULL (MI_BIN_HUGE+1)
#define MI_BIN_COUNT (MI_BIN_FULL+1)
// We never allocate more than PTRDIFF_MAX (see also <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
#define MI_MAX_ALLOC_SIZE PTRDIFF_MAX
// Minimal commit for a page on-demand commit (should be >= OS page size)
#define MI_PAGE_MIN_COMMIT_SIZE MI_ARENA_SLICE_SIZE // (4*MI_KiB)
// ------------------------------------------------------
// Arena's are large reserved areas of memory allocated from
// the OS that are managed by mimalloc to efficiently
// allocate MI_ARENA_SLICE_SIZE slices of memory for the
// mimalloc pages.
// ------------------------------------------------------
// A large memory arena where pages are allocated in.
typedef struct mi_arena_s mi_arena_t; // defined in `arena.c`
// ---------------------------------------------------------------
// a memory id tracks the provenance of arena/OS allocated memory
// ---------------------------------------------------------------
// Memory can reside in arena's, direct OS allocated, meta-data pages, or statically allocated.
// The memid keeps track of this.
typedef enum mi_memkind_e {
MI_MEM_NONE, // not allocated
MI_MEM_EXTERNAL, // not owned by mimalloc but provided externally (via `mi_manage_os_memory` for example)
MI_MEM_STATIC, // allocated in a static area and should not be freed (the initial main heap data for example (`init.c`))
MI_MEM_META, // allocated with the meta data allocator (`arena-meta.c`)
MI_MEM_OS, // allocated from the OS
MI_MEM_OS_HUGE, // allocated as huge OS pages (usually 1GiB, pinned to physical memory)
MI_MEM_OS_REMAP, // allocated in a remapable area (i.e. using `mremap`)
MI_MEM_ARENA // allocated from an arena (the usual case) (`arena.c`)
} mi_memkind_t;
static inline bool mi_memkind_is_os(mi_memkind_t memkind) {
return (memkind >= MI_MEM_OS && memkind <= MI_MEM_OS_REMAP);
}
static inline bool mi_memkind_needs_no_free(mi_memkind_t memkind) {
return (memkind <= MI_MEM_STATIC);
}
typedef struct mi_memid_os_info {
void* base; // actual base address of the block (used for offset aligned allocations)
size_t size; // allocated full size
// size_t alignment; // alignment at allocation
} mi_memid_os_info_t;
typedef struct mi_memid_arena_info {
mi_arena_t* arena; // arena that contains this memory
uint32_t slice_index; // slice index in the arena
uint32_t slice_count; // allocated slices
} mi_memid_arena_info_t;
typedef struct mi_memid_meta_info {
void* meta_page; // meta-page that contains the block
uint32_t block_index; // block index in the meta-data page
uint32_t block_count; // allocated blocks
} mi_memid_meta_info_t;
typedef struct mi_memid_s {
union {
mi_memid_os_info_t os; // only used for MI_MEM_OS
mi_memid_arena_info_t arena; // only used for MI_MEM_ARENA
mi_memid_meta_info_t meta; // only used for MI_MEM_META
} mem;
mi_memkind_t memkind;
bool is_pinned; // `true` if we cannot decommit/reset/protect in this memory (e.g. when allocated using large (2Mib) or huge (1GiB) OS pages)
bool initially_committed;// `true` if the memory was originally allocated as committed
bool initially_zero; // `true` if the memory was originally zero initialized
} mi_memid_t;
static inline bool mi_memid_is_os(mi_memid_t memid) {
return mi_memkind_is_os(memid.memkind);
}
static inline bool mi_memid_needs_no_free(mi_memid_t memid) {
return mi_memkind_needs_no_free(memid.memkind);
}
// ------------------------------------------------------
// Mimalloc pages contain allocated blocks
// ------------------------------------------------------
// The free lists use encoded next fields
// (Only actually encodes when MI_ENCODED_FREELIST is defined.)
typedef uintptr_t mi_encoded_t;
// thread id's
typedef size_t mi_threadid_t;
// free lists contain blocks
typedef struct mi_block_s {
mi_encoded_t next;
} mi_block_t;
// The page flags are put in the bottom 2 bits of the thread_id (for a fast test in `mi_free`)
// `has_aligned` is true if the page has pointers at an offset in a block (so we unalign before free-ing)
// `in_full_queue` is true if the page is full and resides in the full queue (so we move it to a regular queue on free-ing)
#define MI_PAGE_IN_FULL_QUEUE MI_ZU(0x01)
#define MI_PAGE_HAS_ALIGNED MI_ZU(0x02)
#define MI_PAGE_FLAG_MASK MI_ZU(0x03)
typedef size_t mi_page_flags_t;
// There are two special threadid's: 0 for abandoned threads, and 4 for abandoned & mapped threads --
// abandoned-mapped pages are abandoned but also mapped in an arena so can be quickly found for reuse.
#define MI_THREADID_ABANDONED MI_ZU(0)
#define MI_THREADID_ABANDONED_MAPPED (MI_PAGE_FLAG_MASK + 1)
// Thread free list.
// Points to a list of blocks that are freed by other threads.
// The least-bit is set if the page is owned by the current thread. (`mi_page_is_owned`).
// Ownership is required before we can read any non-atomic fields in the page.
// This way we can push a block on the thread free list and try to claim ownership atomically in `free.c:mi_free_block_mt`.
typedef uintptr_t mi_thread_free_t;
// A heap can serve only specific objects signified by its heap tag (e.g. various object types in CPython)
typedef uint8_t mi_heaptag_t;
// A page contains blocks of one specific size (`block_size`).
// Each page has three list of free blocks:
// `free` for blocks that can be allocated,
// `local_free` for freed blocks that are not yet available to `mi_malloc`
// `thread_free` for freed blocks by other threads
// The `local_free` and `thread_free` lists are migrated to the `free` list
// when it is exhausted. The separate `local_free` list is necessary to
// implement a monotonic heartbeat. The `thread_free` list is needed for
// avoiding atomic operations when allocating from the owning thread.
//
// `used - |thread_free|` == actual blocks that are in use (alive)
// `used - |thread_free| + |free| + |local_free| == capacity`
//
// We don't count "freed" (as |free|) but use only the `used` field to reduce
// the number of memory accesses in the `mi_page_all_free` function(s).
// Use `_mi_page_free_collect` to collect the thread_free list and update the `used` count.
//
// Notes:
// - Non-atomic fields can only be accessed if having _ownership_ (low bit of `xthread_free` is 1).
// Combining the `thread_free` list with an ownership bit allows a concurrent `free` to atomically
// free an object and (re)claim ownership if the page was abandoned.
// - If a page is not part of a heap it is called "abandoned" (`heap==NULL`) -- in
// that case the `xthreadid` is 0 or 4 (4 is for abandoned pages that
// are in the abandoned page lists of an arena, these are called "mapped" abandoned pages).
// - page flags are in the bottom 3 bits of `xthread_id` for the fast path in `mi_free`.
// - The layout is optimized for `free.c:mi_free` and `alloc.c:mi_page_alloc`
// - Using `uint16_t` does not seem to slow things down
typedef struct mi_page_s {
_Atomic(mi_threadid_t) xthread_id; // thread this page belongs to. (= `heap->thread_id (or 0 or 4 if abandoned) | page_flags`)
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
uint16_t used; // number of blocks in use (including blocks in `thread_free`)
uint16_t capacity; // number of blocks committed
uint16_t reserved; // number of blocks reserved in memory
uint8_t block_size_shift; // if not zero, then `(1 << block_size_shift) == block_size` (only used for fast path in `free.c:_mi_page_ptr_unalign`)
uint8_t retire_expire; // expiration count for retired blocks
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
_Atomic(mi_thread_free_t) xthread_free; // list of deferred free blocks freed by other threads (= `mi_block_t* | (1 if owned)`)
size_t block_size; // size available in each block (always `>0`)
uint8_t* page_start; // start of the blocks
mi_heaptag_t heap_tag; // tag of the owning heap, used to separate heaps by object type
bool free_is_zero; // `true` if the blocks in the free list are zero initialized
// padding
#if (MI_ENCODE_FREELIST || MI_PADDING)
uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary
#endif
mi_heap_t* heap; // the heap owning this page (or NULL for abandoned pages)
struct mi_page_s* next; // next page owned by the heap with the same `block_size`
struct mi_page_s* prev; // previous page owned by the heap with the same `block_size`
size_t slice_committed; // committed size relative to the first arena slice of the page data (or 0 if the page is fully committed already)
mi_memid_t memid; // provenance of the page memory
} mi_page_t;
// ------------------------------------------------------
// Object sizes
// ------------------------------------------------------
#define MI_PAGE_ALIGN MI_ARENA_SLICE_ALIGN // pages must be aligned on this for the page map.
#define MI_PAGE_MIN_START_BLOCK_ALIGN MI_MAX_ALIGN_SIZE // minimal block alignment for the first block in a page (16b)
#define MI_PAGE_MAX_START_BLOCK_ALIGN2 MI_KiB // maximal block alignment for "power of 2"-sized blocks (such that we guarantee natural alignment)
#define MI_PAGE_MAX_OVERALLOC_ALIGN MI_ARENA_SLICE_SIZE // (64 KiB) limit for which we overallocate in arena pages, beyond this use OS allocation
#if (MI_ENCODE_FREELIST || MI_PADDING) && MI_SIZE_SIZE == 8
#define MI_PAGE_INFO_SIZE ((MI_INTPTR_SHIFT+2)*32) // 160 >= sizeof(mi_page_t)
#else
#define MI_PAGE_INFO_SIZE ((MI_INTPTR_SHIFT+1)*32) // 128/96 >= sizeof(mi_page_t)
#endif
// The max object size are checked to not waste more than 12.5% internally over the page sizes.
#define MI_SMALL_MAX_OBJ_SIZE ((MI_SMALL_PAGE_SIZE-MI_PAGE_INFO_SIZE)/8) // < 8 KiB
#if MI_ENABLE_LARGE_PAGES
#define MI_MEDIUM_MAX_OBJ_SIZE ((MI_MEDIUM_PAGE_SIZE-MI_PAGE_INFO_SIZE)/8) // < 64 KiB
#define MI_LARGE_MAX_OBJ_SIZE (MI_LARGE_PAGE_SIZE/8) // <= 256 KiB // note: this must be a nice power of 2 or we get rounding issues with `_mi_bin`
#else
#define MI_MEDIUM_MAX_OBJ_SIZE (MI_MEDIUM_PAGE_SIZE/8) // <= 64 KiB
#define MI_LARGE_MAX_OBJ_SIZE MI_MEDIUM_MAX_OBJ_SIZE // <= 64 KiB // note: this must be a nice power of 2 or we get rounding issues with `_mi_bin`
#endif
#define MI_LARGE_MAX_OBJ_WSIZE (MI_LARGE_MAX_OBJ_SIZE/MI_SIZE_SIZE)
#if (MI_LARGE_MAX_OBJ_WSIZE >= 655360)
#error "mimalloc internal: define more bins"
#endif
// ------------------------------------------------------
// Page kinds
// ------------------------------------------------------
typedef enum mi_page_kind_e {
MI_PAGE_SMALL, // small blocks go into 64KiB pages
MI_PAGE_MEDIUM, // medium blocks go into 512KiB pages
MI_PAGE_LARGE, // larger blocks go into 4MiB pages (if `MI_ENABLE_LARGE_PAGES==1`)
MI_PAGE_SINGLETON // page containing a single block.
// used for blocks `> MI_LARGE_MAX_OBJ_SIZE` or an aligment `> MI_PAGE_MAX_OVERALLOC_ALIGN`.
} mi_page_kind_t;
// ------------------------------------------------------
// Heaps
//
// Provide first-class heaps to allocate from.
// A heap just owns a set of pages for allocation and
// can only be allocate/reallocate from the thread that created it.
// Freeing blocks can be done from any thread though.
//
// Per thread, there is always a default heap that is
// used for allocation; it is initialized to statically
// point to an empty heap to avoid initialization checks
// in the fast path.
// ------------------------------------------------------
// Thread local data
typedef struct mi_tld_s mi_tld_t;
// Pages of a certain block size are held in a queue.
typedef struct mi_page_queue_s {
mi_page_t* first;
mi_page_t* last;
size_t block_size;
} mi_page_queue_t;
// Random context
typedef struct mi_random_cxt_s {
uint32_t input[16];
uint32_t output[16];
int output_available;
bool weak;
} mi_random_ctx_t;
// In debug mode there is a padding structure at the end of the blocks to check for buffer overflows
#if MI_PADDING
typedef struct mi_padding_s {
uint32_t canary; // encoded block value to check validity of the padding (in case of overflow)
uint32_t delta; // padding bytes before the block. (mi_usable_size(p) - delta == exact allocated bytes)
} mi_padding_t;
#define MI_PADDING_SIZE (sizeof(mi_padding_t))
#define MI_PADDING_WSIZE ((MI_PADDING_SIZE + MI_INTPTR_SIZE - 1) / MI_INTPTR_SIZE)
#else
#define MI_PADDING_SIZE 0
#define MI_PADDING_WSIZE 0
#endif
#define MI_PAGES_DIRECT (MI_SMALL_WSIZE_MAX + MI_PADDING_WSIZE + 1)
// A heap owns a set of pages.
struct mi_heap_s {
mi_tld_t* tld; // thread-local data
mi_arena_t* exclusive_arena; // if the heap should only allocate from a specific arena (or NULL)
uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`)
mi_random_ctx_t random; // random number context used for secure allocation
size_t page_count; // total number of pages in the `pages` queues.
size_t page_retired_min; // smallest retired index (retired pages are fully free, but still in the page queues)
size_t page_retired_max; // largest retired index into the `pages` array.
size_t generic_count; // how often is mimalloc_generic invoked?
mi_heap_t* next; // list of heaps per thread
long page_full_retain; // how many full pages can be retained per queue (before abondoning them)
bool allow_page_reclaim; // `true` if this heap should not reclaim abandoned pages
bool allow_page_abandon; // `true` if this heap can abandon pages to reduce memory footprint
uint8_t tag; // custom tag, can be used for separating heaps based on the object types
#if MI_GUARDED
size_t guarded_size_min; // minimal size for guarded objects
size_t guarded_size_max; // maximal size for guarded objects
size_t guarded_sample_rate; // sample rate (set to 0 to disable guarded pages)
size_t guarded_sample_seed; // starting sample count
size_t guarded_sample_count; // current sample count (counting down to 0)
#endif
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages[MI_BIN_COUNT]; // queue of pages for each size class (or "bin")
mi_memid_t memid; // provenance of the heap struct itself (meta or os)
};
// ------------------------------------------------------
// Statistics
// ------------------------------------------------------
#ifndef MI_STAT
#if (MI_DEBUG>0)
#define MI_STAT 2
#else
#define MI_STAT 0
#endif
#endif
typedef struct mi_stat_count_s {
int64_t allocated;
int64_t freed;
int64_t peak;
int64_t current;
} mi_stat_count_t;
typedef struct mi_stat_counter_s {
int64_t total;
int64_t count;
} mi_stat_counter_t;
typedef struct mi_stats_s {
mi_stat_count_t pages;
mi_stat_count_t reserved;
mi_stat_count_t committed;
mi_stat_count_t reset;
mi_stat_count_t purged;
mi_stat_count_t page_committed;
mi_stat_count_t pages_abandoned;
mi_stat_count_t threads;
mi_stat_count_t normal;
mi_stat_count_t huge;
mi_stat_count_t giant;
mi_stat_count_t malloc;
mi_stat_counter_t pages_extended;
mi_stat_counter_t pages_reclaim_on_alloc;
mi_stat_counter_t pages_reclaim_on_free;
mi_stat_counter_t pages_reabandon_full;
mi_stat_counter_t pages_unabandon_busy_wait;
mi_stat_counter_t mmap_calls;
mi_stat_counter_t commit_calls;
mi_stat_counter_t reset_calls;
mi_stat_counter_t purge_calls;
mi_stat_counter_t arena_purges;
mi_stat_counter_t page_no_retire;
mi_stat_counter_t searches;
mi_stat_counter_t normal_count;
mi_stat_counter_t huge_count;
mi_stat_counter_t arena_count;
mi_stat_counter_t guarded_alloc_count;
#if MI_STAT>1
mi_stat_count_t normal_bins[MI_BIN_COUNT];
#endif
} mi_stats_t;
// add to stat keeping track of the peak
void __mi_stat_increase(mi_stat_count_t* stat, size_t amount);
void __mi_stat_decrease(mi_stat_count_t* stat, size_t amount);
void __mi_stat_increase_mt(mi_stat_count_t* stat, size_t amount);
void __mi_stat_decrease_mt(mi_stat_count_t* stat, size_t amount);
// adjust stat in special cases to compensate for double counting
void __mi_stat_adjust_increase(mi_stat_count_t* stat, size_t amount, bool on_alloc);
void __mi_stat_adjust_decrease(mi_stat_count_t* stat, size_t amount, bool on_free);
void __mi_stat_adjust_increase_mt(mi_stat_count_t* stat, size_t amount, bool on_alloc);
void __mi_stat_adjust_decrease_mt(mi_stat_count_t* stat, size_t amount, bool on_free);
// counters can just be increased
void __mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount);
void __mi_stat_counter_increase_mt(mi_stat_counter_t* stat, size_t amount);
#if (MI_STAT)
#define mi_debug_stat_increase(stat,amount) __mi_stat_increase( &(stat), amount)
#define mi_debug_stat_decrease(stat,amount) __mi_stat_decrease( &(stat), amount)
#define mi_debug_stat_counter_increase(stat,amount) __mi_stat_counter_increase( &(stat), amount)
#define mi_debug_stat_increase_mt(stat,amount) __mi_stat_increase_mt( &(stat), amount)
#define mi_debug_stat_decrease_mt(stat,amount) __mi_stat_decrease_mt( &(stat), amount)
#define mi_debug_stat_counter_increase_mt(stat,amount) __mi_stat_counter_increase_mt( &(stat), amount)
#define mi_debug_stat_adjust_increase_mt(stat,amnt,b) __mi_stat_adjust_increase_mt( &(stat), amnt, b)
#define mi_debug_stat_adjust_decrease_mt(stat,amnt,b) __mi_stat_adjust_decrease_mt( &(stat), amnt, b)
#else
#define mi_debug_stat_increase(stat,amount) ((void)0)
#define mi_debug_stat_decrease(stat,amount) ((void)0)
#define mi_debug_stat_counter_increase(stat,amount) ((void)0)
#define mi_debug_stat_increase_mt(stat,amount) ((void)0)
#define mi_debug_stat_decrease_mt(stat,amount) ((void)0)
#define mi_debug_stat_counter_increase_mt(stat,amount) ((void)0)
#define mi_debug_stat_adjust_increase(stat,amnt,b) ((void)0)
#define mi_debug_stat_adjust_decrease(stat,amnt,b) ((void)0)
#endif
#define mi_subproc_stat_counter_increase(subproc,stat,amount) __mi_stat_counter_increase_mt( &(subproc)->stats.stat, amount)
#define mi_subproc_stat_increase(subproc,stat,amount) __mi_stat_increase_mt( &(subproc)->stats.stat, amount)
#define mi_subproc_stat_decrease(subproc,stat,amount) __mi_stat_decrease_mt( &(subproc)->stats.stat, amount)
#define mi_subproc_stat_adjust_increase(subproc,stat,amnt,b) __mi_stat_adjust_increase_mt( &(subproc)->stats.stat, amnt, b)
#define mi_subproc_stat_adjust_decrease(subproc,stat,amnt,b) __mi_stat_adjust_decrease_mt( &(subproc)->stats.stat, amnt, b)
#define mi_tld_stat_counter_increase(tld,stat,amount) __mi_stat_counter_increase( &(tld)->stats.stat, amount)
#define mi_tld_stat_increase(tld,stat,amount) __mi_stat_increase( &(tld)->stats.stat, amount)
#define mi_tld_stat_decrease(tld,stat,amount) __mi_stat_decrease( &(tld)->stats.stat, amount)
#define mi_tld_stat_adjust_increase(tld,stat,amnt,b) __mi_stat_adjust_increase( &(tld)->stats.stat, amnt, b)
#define mi_tld_stat_adjust_decrease(tld,stat,amnt,b) __mi_stat_adjust_decrease( &(tld)->stats.stat, amnt, b)
#define mi_os_stat_counter_increase(stat,amount) mi_subproc_stat_counter_increase(_mi_subproc(),stat,amount)
#define mi_os_stat_increase(stat,amount) mi_subproc_stat_increase(_mi_subproc(),stat,amount)
#define mi_os_stat_decrease(stat,amount) mi_subproc_stat_decrease(_mi_subproc(),stat,amount)
#define mi_heap_stat_counter_increase(heap,stat,amount) mi_tld_stat_counter_increase(heap->tld, stat, amount)
#define mi_heap_stat_increase(heap,stat,amount) mi_tld_stat_increase( heap->tld, stat, amount)
#define mi_heap_stat_decrease(heap,stat,amount) mi_tld_stat_decrease( heap->tld, stat, amount)
#define mi_debug_heap_stat_counter_increase(heap,stat,amount) mi_debug_stat_counter_increase( (heap)->tld->stats.stat, amount)
#define mi_debug_heap_stat_increase(heap,stat,amount) mi_debug_stat_increase( (heap)->tld->stats.stat, amount)
#define mi_debug_heap_stat_decrease(heap,stat,amount) mi_debug_stat_decrease( (heap)->tld->stats.stat, amount)
// ------------------------------------------------------
// Sub processes use separate arena's and no heaps/pages/blocks
// are shared between sub processes.
// The subprocess structure contains essentially all static variables (except per subprocess :-))
//
// Each thread should belong to one sub-process only
// ------------------------------------------------------
#define MI_MAX_ARENAS (160) // Limited for now (and takes up .bss).. but arena's scale up exponentially (see `mi_arena_reserve`)
// 160 arenas is enough for ~2 TiB memory
typedef struct mi_subproc_s {
_Atomic(size_t) arena_count; // current count of arena's
_Atomic(mi_arena_t*) arenas[MI_MAX_ARENAS]; // arena's of this sub-process
mi_lock_t arena_reserve_lock; // lock to ensure arena's get reserved one at a time
_Atomic(int64_t) purge_expire; // expiration is set if any arenas can be purged
_Atomic(size_t) abandoned_count[MI_BIN_COUNT]; // total count of abandoned pages for this sub-process
mi_page_t* os_abandoned_pages; // list of pages that OS allocated and not in an arena (only used if `mi_option_visit_abandoned` is on)
mi_lock_t os_abandoned_pages_lock; // lock for the os abandoned pages list (this lock protects list operations)
mi_memid_t memid; // provenance of this memory block (meta or OS)
mi_stats_t stats; // sub-process statistics (tld stats are merged in on thread termination)
} mi_subproc_t;
// ------------------------------------------------------
// Thread Local data
// ------------------------------------------------------
// Milliseconds as in `int64_t` to avoid overflows
typedef int64_t mi_msecs_t;
// Thread local data
struct mi_tld_s {
mi_threadid_t thread_id; // thread id of this thread
size_t thread_seq; // thread sequence id (linear count of created threads)
mi_subproc_t* subproc; // sub-process this thread belongs to.
mi_heap_t* heap_backing; // backing heap of this thread (cannot be deleted)
mi_heap_t* heaps; // list of heaps in this thread (so we can abandon all when the thread terminates)
unsigned long long heartbeat; // monotonic heartbeat count
bool recurse; // true if deferred was called; used to prevent infinite recursion.
bool is_in_threadpool; // true if this thread is part of a threadpool (and can run arbitrary tasks)
mi_stats_t stats; // statistics
mi_memid_t memid; // provenance of the tld memory itself (meta or OS)
};
/* -----------------------------------------------------------
Error codes passed to `_mi_fatal_error`
All are recoverable but EFAULT is a serious error and aborts by default in secure mode.
For portability define undefined error codes using common Unix codes:
<https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html>
----------------------------------------------------------- */
#ifndef EAGAIN // double free
#define EAGAIN (11)
#endif
#ifndef ENOMEM // out of memory
#define ENOMEM (12)
#endif
#ifndef EFAULT // corrupted free-list or meta-data
#define EFAULT (14)
#endif
#ifndef EINVAL // trying to free an invalid pointer
#define EINVAL (22)
#endif
#ifndef EOVERFLOW // count*size overflow
#define EOVERFLOW (75)
#endif
// ------------------------------------------------------
// Debug
// ------------------------------------------------------
#ifndef MI_DEBUG_UNINIT
#define MI_DEBUG_UNINIT (0xD0)
#endif
#ifndef MI_DEBUG_FREED
#define MI_DEBUG_FREED (0xDF)
#endif
#ifndef MI_DEBUG_PADDING
#define MI_DEBUG_PADDING (0xDE)
#endif
#endif // MI_TYPES_H