mimalloc/src/alloc-aligned.c
Johannes Schindelin 5bd8ea2e4f Repeat mi_decl_allocator in functions' definitions
Quite a few functions are declared with that attribute, and VS 2019
complains if the definition does not repeat it.

Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2019-10-17 20:43:18 +02:00

204 lines
9.8 KiB
C

/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include <string.h> // memset, memcpy
// ------------------------------------------------------
// Aligned Allocation
// ------------------------------------------------------
static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept {
// note: we don't require `size > offset`, we just guarantee that
// the address at offset is aligned regardless of the allocated size.
mi_assert(alignment > 0 && alignment % sizeof(void*) == 0);
if (mi_unlikely(size > PTRDIFF_MAX)) return NULL; // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) return NULL; // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>)
const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)`
// try if there is a small block available with just the right alignment
if (mi_likely(size <= MI_SMALL_SIZE_MAX)) {
mi_page_t* page = _mi_heap_get_free_small_page(heap,size);
const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0;
if (mi_likely(page->free != NULL && is_aligned))
{
#if MI_STAT>1
mi_heap_stat_increase( heap, malloc, size);
#endif
void* p = _mi_page_malloc(heap,page,size); // TODO: inline _mi_page_malloc
mi_assert_internal(p != NULL);
mi_assert_internal(((uintptr_t)p + offset) % alignment == 0);
if (zero) _mi_block_zero_init(page,p,size);
return p;
}
}
// use regular allocation if it is guaranteed to fit the alignment constraints
if (offset==0 && alignment<=size && size<=MI_MEDIUM_OBJ_SIZE_MAX && (size&align_mask)==0) {
void* p = _mi_heap_malloc_zero(heap, size, zero);
mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0);
return p;
}
// otherwise over-allocate
void* p = _mi_heap_malloc_zero(heap, size + alignment - 1, zero);
if (p == NULL) return NULL;
// .. and align within the allocation
uintptr_t adjust = alignment - (((uintptr_t)p + offset) & align_mask);
mi_assert_internal(adjust % sizeof(uintptr_t) == 0);
void* aligned_p = (adjust == alignment ? p : (void*)((uintptr_t)p + adjust));
if (aligned_p != p) mi_page_set_has_aligned(_mi_ptr_page(p), true);
mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
mi_assert_internal( p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p),_mi_ptr_page(aligned_p),aligned_p) );
return aligned_p;
}
mi_decl_allocator void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false);
}
mi_decl_allocator void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_malloc_aligned_at(heap, size, alignment, 0);
}
mi_decl_allocator void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true);
}
mi_decl_allocator void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_zalloc_aligned_at(heap, size, alignment, 0);
}
mi_decl_allocator void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count, size, &total)) return NULL;
return mi_heap_zalloc_aligned_at(heap, total, alignment, offset);
}
mi_decl_allocator void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_calloc_aligned_at(heap,count,size,alignment,0);
}
mi_decl_allocator void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_malloc_aligned_at(mi_get_default_heap(), size, alignment, offset);
}
mi_decl_allocator void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_malloc_aligned(mi_get_default_heap(), size, alignment);
}
mi_decl_allocator void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_zalloc_aligned_at(mi_get_default_heap(), size, alignment, offset);
}
mi_decl_allocator void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_zalloc_aligned(mi_get_default_heap(), size, alignment);
}
mi_decl_allocator void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_calloc_aligned_at(mi_get_default_heap(), count, size, alignment, offset);
}
mi_decl_allocator void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_calloc_aligned(mi_get_default_heap(), count, size, alignment);
}
static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
mi_assert(alignment > 0);
if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
if (p == NULL) return mi_heap_malloc_zero_aligned_at(heap,newsize,alignment,offset,zero);
size_t size = mi_usable_size(p);
if (newsize <= size && newsize >= (size - (size / 2))
&& (((uintptr_t)p + offset) % alignment) == 0) {
return p; // reallocation still fits, is aligned and not more than 50% waste
}
else {
void* newp = mi_heap_malloc_aligned_at(heap,newsize,alignment,offset);
if (newp != NULL) {
if (zero && newsize > size) {
const mi_page_t* page = _mi_ptr_page(newp);
if (page->flags.is_zero) {
// already zero initialized
mi_assert_expensive(mi_mem_is_zero(newp,newsize));
}
else {
// also set last word in the previous allocation to zero to ensure any padding is zero-initialized
size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
memset((uint8_t*)newp + start, 0, newsize - start);
}
}
memcpy(newp, p, (newsize > size ? size : newsize));
mi_free(p); // only free if successful
}
return newp;
}
}
static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept {
mi_assert(alignment > 0);
if (alignment <= sizeof(uintptr_t)) return _mi_heap_realloc_zero(heap,p,newsize,zero);
size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL)
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero);
}
mi_decl_allocator void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false);
}
mi_decl_allocator void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false);
}
mi_decl_allocator void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true);
}
mi_decl_allocator void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true);
}
mi_decl_allocator void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(newcount, size, &total)) return NULL;
return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset);
}
mi_decl_allocator void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(newcount, size, &total)) return NULL;
return mi_heap_rezalloc_aligned(heap, p, total, alignment);
}
mi_decl_allocator void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_realloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset);
}
mi_decl_allocator void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_realloc_aligned(mi_get_default_heap(), p, newsize, alignment);
}
mi_decl_allocator void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_rezalloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset);
}
mi_decl_allocator void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return mi_heap_rezalloc_aligned(mi_get_default_heap(), p, newsize, alignment);
}
mi_decl_allocator void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_heap_recalloc_aligned_at(mi_get_default_heap(), p, newcount, size, alignment, offset);
}
mi_decl_allocator void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_recalloc_aligned(mi_get_default_heap(), p, newcount, size, alignment);
}