mimalloc/src/segment.c

736 lines
28 KiB
C

/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"
#include <string.h> // memset
#include <stdio.h>
#define MI_PAGE_HUGE_ALIGN (256*1024)
/* -----------------------------------------------------------
Segment allocation
We allocate pages inside big OS allocated "segments"
(4mb on 64-bit). This is to avoid splitting VMA's on Linux
and reduce fragmentation on other OS's. Each thread
owns its own segments.
Currently we have:
- small pages (64kb), 32 in one segment
- large pages (4mb), 1 in one segment
- huge blocks > MI_LARGE_SIZE_MAX (512kb) are directly allocated by the OS
In any case the memory for a segment is virtual and only
committed on demand (i.e. we are careful to not touch the memory
until we actually allocate a block there)
If a thread ends, it "abandons" pages with used blocks
and there is an abandoned segment list whose segments can
be reclaimed by still running threads, much like work-stealing.
----------------------------------------------------------- */
#if (MI_DEBUG > 1)
static bool mi_segment_is_valid(mi_segment_t* segment) {
mi_assert_internal(segment != NULL);
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(segment->used <= segment->capacity);
mi_assert_internal(segment->abandoned <= segment->used);
size_t nfree = 0;
for (size_t i = 0; i < segment->capacity; i++) {
if (!segment->pages[i].segment_in_use) nfree++;
}
mi_assert_internal(nfree + segment->used == segment->capacity);
mi_assert_internal(segment->thread_id == _mi_thread_id()); // or 0
return true;
}
#endif
/* -----------------------------------------------------------
Queue of segments containing free pages
----------------------------------------------------------- */
#if (MI_DEBUG>1)
static bool mi_segment_queue_contains(const mi_segment_queue_t* queue, mi_segment_t* segment) {
mi_assert_internal(segment != NULL);
mi_segment_t* list = queue->first;
while (list != NULL) {
if (list == segment) break;
mi_assert_internal(list->next==NULL || list->next->prev == list);
mi_assert_internal(list->prev==NULL || list->prev->next == list);
list = list->next;
}
return (list == segment);
}
#endif
// quick test to see if a segment is in the free pages queue
static bool mi_segment_is_in_free_queue(mi_segment_t* segment, mi_segments_tld_t* tld) {
bool in_queue = (segment->next != NULL || segment->prev != NULL || tld->small_free.first == segment);
if (in_queue) {
mi_assert(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
}
return in_queue;
}
static bool mi_segment_queue_is_empty(const mi_segment_queue_t* queue) {
return (queue->first == NULL);
}
static void mi_segment_queue_remove(mi_segment_queue_t* queue, mi_segment_t* segment) {
mi_assert_expensive(mi_segment_queue_contains(queue, segment));
if (segment->prev != NULL) segment->prev->next = segment->next;
if (segment->next != NULL) segment->next->prev = segment->prev;
if (segment == queue->first) queue->first = segment->next;
if (segment == queue->last) queue->last = segment->prev;
segment->next = NULL;
segment->prev = NULL;
}
static void mi_segment_enqueue(mi_segment_queue_t* queue, mi_segment_t* segment) {
mi_assert_expensive(!mi_segment_queue_contains(queue, segment));
segment->next = NULL;
segment->prev = queue->last;
if (queue->last != NULL) {
mi_assert_internal(queue->last->next == NULL);
queue->last->next = segment;
queue->last = segment;
}
else {
queue->last = queue->first = segment;
}
}
static void mi_segment_queue_insert_before(mi_segment_queue_t* queue, mi_segment_t* elem, mi_segment_t* segment) {
mi_assert_expensive(elem==NULL || mi_segment_queue_contains(queue, elem));
mi_assert_expensive(segment != NULL && !mi_segment_queue_contains(queue, segment));
segment->prev = (elem == NULL ? queue->last : elem->prev);
if (segment->prev != NULL) segment->prev->next = segment;
else queue->first = segment;
segment->next = elem;
if (segment->next != NULL) segment->next->prev = segment;
else queue->last = segment;
}
// Start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set)
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size)
{
size_t psize = (segment->page_kind == MI_PAGE_HUGE ? segment->segment_size : (size_t)1 << segment->page_shift);
uint8_t* p = (uint8_t*)segment + page->segment_idx*psize;
if (page->segment_idx == 0) {
// the first page starts after the segment info (and possible guard page)
p += segment->segment_info_size;
psize -= segment->segment_info_size;
// for small objects, ensure the page start is aligned with the block size (PR#66 by kickunderscore)
if (block_size > 0 && segment->page_kind == MI_PAGE_SMALL) {
size_t adjust = block_size - ((uintptr_t)p % block_size);
if (adjust < block_size) {
p += adjust;
psize -= adjust;
}
mi_assert_internal((uintptr_t)p % block_size == 0);
}
}
long secure = mi_option_get(mi_option_secure);
if (secure > 1 || (secure == 1 && page->segment_idx == segment->capacity - 1)) {
// secure == 1: the last page has an os guard page at the end
// secure > 1: every page has an os guard page
psize -= _mi_os_page_size();
}
if (page_size != NULL) *page_size = psize;
mi_assert_internal(_mi_ptr_page(p) == page);
mi_assert_internal(_mi_ptr_segment(p) == segment);
return p;
}
static size_t mi_segment_size(size_t capacity, size_t required, size_t* pre_size, size_t* info_size) {
/*
if (mi_option_is_enabled(mi_option_secure)) {
// always reserve maximally so the protection falls on
// the same address area, as we need to reuse them from the caches interchangably.
capacity = MI_SMALL_PAGES_PER_SEGMENT;
}
*/
size_t minsize = sizeof(mi_segment_t) + ((capacity - 1) * sizeof(mi_page_t)) + 16 /* padding */;
size_t guardsize = 0;
size_t isize = 0;
if (!mi_option_is_enabled(mi_option_secure)) {
// normally no guard pages
isize = _mi_align_up(minsize, (16 > MI_MAX_ALIGN_SIZE ? 16 : MI_MAX_ALIGN_SIZE));
}
else {
// in secure mode, we set up a protected page in between the segment info
// and the page data (and one at the end of the segment)
size_t page_size = _mi_os_page_size();
isize = _mi_align_up(minsize, page_size);
guardsize = page_size;
required = _mi_align_up(required, page_size);
}
;
if (info_size != NULL) *info_size = isize;
if (pre_size != NULL) *pre_size = isize + guardsize;
return (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + 2*guardsize, MI_PAGE_HUGE_ALIGN) );
}
/* -----------------------------------------------------------
Segment caches
We keep a small segment cache per thread to avoid repeated allocation
and free in the OS if a program allocates memory and then frees
all again repeatedly. (We tried a one-element cache but that
proves to be too small for certain workloads).
----------------------------------------------------------- */
static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
if (segment_size>=0) _mi_stat_increase(&tld->stats->segments,1);
else _mi_stat_decrease(&tld->stats->segments,1);
tld->current_size += segment_size;
if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
}
static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) {
mi_segments_track_size(-((long)segment_size),tld);
_mi_os_free(segment, segment_size,tld->stats);
}
// The segment cache is limited to be at most 1/8 of the peak size
// in use (and no more than 32)
#define MI_SEGMENT_CACHE_MAX (32)
#define MI_SEGMENT_CACHE_FRACTION (8)
// Get a segment of at least `required` size.
// If `required == MI_SEGMENT_SIZE` the `segment_size` will match exactly
static mi_segment_t* _mi_segment_cache_findx(mi_segments_tld_t* tld, size_t required, bool reverse) {
mi_assert_internal(required % _mi_os_page_size() == 0);
mi_segment_t* segment = (reverse ? tld->cache.last : tld->cache.first);
while (segment != NULL) {
if (segment->segment_size >= required) {
tld->cache_count--;
tld->cache_size -= segment->segment_size;
mi_segment_queue_remove(&tld->cache, segment);
// exact size match?
if (required==0 || segment->segment_size == required) {
return segment;
}
// not more than 25% waste and on a huge page segment? (in that case the segment size does not need to match required)
else if (required != MI_SEGMENT_SIZE && segment->segment_size - (segment->segment_size/4) <= required) {
return segment;
}
// try to shrink the memory to match exactly
else {
if (mi_option_is_enabled(mi_option_secure)) {
_mi_os_unprotect(segment, segment->segment_size);
}
if (_mi_os_shrink(segment, segment->segment_size, required, tld->stats)) {
tld->current_size -= segment->segment_size;
tld->current_size += required;
segment->segment_size = required;
return segment;
}
else {
// if that all fails, we give up
mi_segment_os_free(segment,segment->segment_size,tld);
return NULL;
}
}
}
segment = (reverse ? segment->prev : segment->next);
}
return NULL;
}
static mi_segment_t* mi_segment_cache_find(mi_segments_tld_t* tld, size_t required) {
mi_segment_t* segment = _mi_segment_cache_findx(tld,required,false);
if (segment != NULL &&
mi_option_is_enabled(mi_option_eager_commit) &&
(mi_option_is_enabled(mi_option_cache_reset) || mi_option_is_enabled(mi_option_page_reset)))
{
// ensure the memory is available
_mi_os_unreset((uint8_t*)segment + segment->segment_info_size, segment->segment_size - segment->segment_info_size, tld->stats);
}
return segment;
}
static mi_segment_t* mi_segment_cache_evict(mi_segments_tld_t* tld) {
// TODO: random eviction instead?
return _mi_segment_cache_findx(tld, 0, true /* from the end */);
}
static bool mi_segment_cache_full(mi_segments_tld_t* tld) {
if (tld->cache_count < MI_SEGMENT_CACHE_MAX &&
tld->cache_size*MI_SEGMENT_CACHE_FRACTION < tld->peak_size) return false;
// take the opportunity to reduce the segment cache if it is too large (now)
while (tld->cache_size*MI_SEGMENT_CACHE_FRACTION >= tld->peak_size + 1) {
mi_segment_t* segment = mi_segment_cache_evict(tld);
mi_assert_internal(segment != NULL);
if (segment != NULL) mi_segment_os_free(segment, segment->segment_size, tld);
}
return true;
}
static bool mi_segment_cache_insert(mi_segment_t* segment, mi_segments_tld_t* tld) {
mi_assert_internal(segment->next==NULL && segment->prev==NULL);
mi_assert_internal(!mi_segment_is_in_free_queue(segment,tld));
mi_assert_expensive(!mi_segment_queue_contains(&tld->cache, segment));
if (mi_segment_cache_full(tld)) return false;
if (mi_option_is_enabled(mi_option_cache_reset)) { // && !mi_option_is_enabled(mi_option_page_reset)) {
// note: not good if large OS pages are enabled
_mi_os_reset((uint8_t*)segment + segment->segment_info_size, segment->segment_size - segment->segment_info_size, tld->stats);
}
// insert ordered
mi_segment_t* seg = tld->cache.first;
while (seg != NULL && seg->segment_size < segment->segment_size) {
seg = seg->next;
}
mi_segment_queue_insert_before( &tld->cache, seg, segment );
tld->cache_count++;
tld->cache_size += segment->segment_size;
return true;
}
// called by ending threads to free cached segments
void _mi_segment_thread_collect(mi_segments_tld_t* tld) {
mi_segment_t* segment;
while ((segment = mi_segment_cache_find(tld,0)) != NULL) {
mi_segment_os_free(segment, segment->segment_size, tld);
}
mi_assert_internal(tld->cache_count == 0 && tld->cache_size == 0);
mi_assert_internal(mi_segment_queue_is_empty(&tld->cache));
}
/* -----------------------------------------------------------
Segment allocation
----------------------------------------------------------- */
// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
static mi_segment_t* mi_segment_alloc( size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
// calculate needed sizes first
size_t capacity;
if (page_kind == MI_PAGE_HUGE) {
mi_assert_internal(page_shift==MI_SEGMENT_SHIFT && required > 0);
capacity = 1;
}
else {
mi_assert_internal(required==0);
size_t page_size = (size_t)1 << page_shift;
capacity = MI_SEGMENT_SIZE / page_size;
mi_assert_internal(MI_SEGMENT_SIZE % page_size == 0);
mi_assert_internal(capacity >= 1 && capacity <= MI_SMALL_PAGES_PER_SEGMENT);
}
size_t info_size;
size_t pre_size;
size_t segment_size = mi_segment_size( capacity, required, &pre_size, &info_size);
mi_assert_internal(segment_size >= required);
size_t page_size = (page_kind == MI_PAGE_HUGE ? segment_size : (size_t)1 << page_shift);
// Allocate the segment
mi_segment_t* segment = NULL;
// try to get it from our caches
bool commit = mi_option_is_enabled(mi_option_eager_commit) || (page_kind != MI_PAGE_SMALL);
bool protection_still_good = false;
segment = mi_segment_cache_find(tld,segment_size);
mi_assert_internal(segment == NULL ||
(segment_size==MI_SEGMENT_SIZE && segment_size == segment->segment_size) ||
(segment_size!=MI_SEGMENT_SIZE && segment_size <= segment->segment_size));
if (segment != NULL) {
if (mi_option_is_enabled(mi_option_secure)) {
if (segment->page_kind != page_kind || segment->segment_size != segment_size) {
_mi_os_unprotect(segment, segment->segment_size);
}
else {
protection_still_good = true; // otherwise, the guard pages are still in place
}
}
}
// and otherwise allocate it from the OS
else {
segment = (mi_segment_t*)_mi_os_alloc_aligned(segment_size, MI_SEGMENT_SIZE, commit, os_tld);
if (segment == NULL) return NULL;
mi_segments_track_size((long)segment_size,tld);
}
mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0);
if (!commit) {
_mi_os_commit(segment,info_size,tld->stats);
}
memset(segment, 0, info_size);
if (mi_option_is_enabled(mi_option_secure) && !protection_still_good) {
// in secure mode, we set up a protected page in between the segment info
// and the page data
mi_assert_internal( info_size == pre_size - _mi_os_page_size() && info_size % _mi_os_page_size() == 0);
_mi_os_protect( (uint8_t*)segment + info_size, (pre_size - info_size) );
size_t os_page_size = _mi_os_page_size();
if (mi_option_get(mi_option_secure) <= 1) {
// and protect the last page too
_mi_os_protect( (uint8_t*)segment + segment_size - os_page_size, os_page_size );
}
else {
// protect every page
for (size_t i = 0; i < capacity; i++) {
_mi_os_protect( (uint8_t*)segment + (i+1)*page_size - os_page_size, os_page_size );
}
}
}
segment->page_kind = page_kind;
segment->capacity = capacity;
segment->page_shift = page_shift;
segment->segment_size = segment_size;
segment->segment_info_size = pre_size;
segment->thread_id = _mi_thread_id();
segment->cookie = _mi_ptr_cookie(segment);
for (uint8_t i = 0; i < segment->capacity; i++) {
segment->pages[i].segment_idx = i;
segment->pages[i].is_reset = !commit;
}
_mi_stat_increase(&tld->stats->page_committed, segment->segment_info_size);
//fprintf(stderr,"mimalloc: alloc segment at %p\n", (void*)segment);
return segment;
}
#if MI_STAT
// Available memory in a page
static size_t mi_page_size(const mi_page_t* page) {
size_t psize;
_mi_page_start(_mi_page_segment(page), page, &psize);
return psize;
}
#endif
static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
//fprintf(stderr,"mimalloc: free segment at %p\n", (void*)segment);
mi_assert(segment != NULL);
if (mi_segment_is_in_free_queue(segment,tld)) {
if (segment->page_kind != MI_PAGE_SMALL) {
fprintf(stderr, "mimalloc: expecting small segment: %i, %p, %p, %p\n", segment->page_kind, segment->prev, segment->next, tld->small_free.first);
fflush(stderr);
}
else {
mi_assert_internal(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
mi_segment_queue_remove(&tld->small_free, segment);
}
}
mi_assert_expensive(!mi_segment_queue_contains(&tld->small_free, segment));
mi_assert(segment->next == NULL);
mi_assert(segment->prev == NULL);
_mi_stat_decrease(&tld->stats->page_committed, segment->segment_info_size);
segment->thread_id = 0;
// update reset memory statistics
/*
for (uint8_t i = 0; i < segment->capacity; i++) {
mi_page_t* page = &segment->pages[i];
if (page->is_reset) {
page->is_reset = false;
mi_stat_decrease( tld->stats->reset,mi_page_size(page));
}
}
*/
if (!force && mi_segment_cache_insert(segment, tld)) {
// it is put in our cache
}
else {
// otherwise return it to the OS
mi_segment_os_free(segment, segment->segment_size, tld);
}
}
/* -----------------------------------------------------------
Free page management inside a segment
----------------------------------------------------------- */
static bool mi_segment_has_free(const mi_segment_t* segment) {
return (segment->used < segment->capacity);
}
static mi_page_t* mi_segment_find_free(mi_segment_t* segment, mi_stats_t* stats) {
mi_assert_internal(mi_segment_has_free(segment));
mi_assert_expensive(mi_segment_is_valid(segment));
for (size_t i = 0; i < segment->capacity; i++) {
mi_page_t* page = &segment->pages[i];
if (!page->segment_in_use) {
if (page->is_reset) {
size_t psize;
uint8_t* start = _mi_page_start(segment, page, &psize);
page->is_reset = false;
if (mi_option_is_enabled(mi_option_eager_commit)) {
_mi_os_unreset(start, psize, stats);
}
else {
// note we could allow both lazy commit, and page level reset if we add a `is_commit` flag...
// for now we use commit for both
_mi_os_commit(start, psize, stats);
}
}
return page;
}
}
mi_assert(false);
return NULL;
}
/* -----------------------------------------------------------
Free
----------------------------------------------------------- */
static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld);
static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, mi_stats_t* stats) {
UNUSED(stats);
mi_assert_internal(page->segment_in_use);
mi_assert_internal(mi_page_all_free(page));
size_t inuse = page->capacity * page->block_size;
_mi_stat_decrease(&stats->page_committed, inuse);
_mi_stat_decrease(&stats->pages, 1);
// reset the page memory to reduce memory pressure?
if (!page->is_reset && mi_option_is_enabled(mi_option_page_reset)) {
size_t psize;
uint8_t* start = _mi_page_start(segment, page, &psize);
page->is_reset = true;
_mi_os_reset(start, psize, stats);
}
// zero the page data
uint8_t idx = page->segment_idx; // don't clear the index
bool is_reset = page->is_reset; // don't clear the reset flag
memset(page, 0, sizeof(*page));
page->segment_idx = idx;
page->segment_in_use = false;
page->is_reset = is_reset;
segment->used--;
}
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
{
mi_assert(page != NULL);
mi_segment_t* segment = _mi_page_segment(page);
mi_assert_expensive(mi_segment_is_valid(segment));
// mark it as free now
mi_segment_page_clear(segment, page, tld->stats);
if (segment->used == 0) {
// no more used pages; remove from the free list and free the segment
mi_segment_free(segment, force, tld);
}
else {
if (segment->used == segment->abandoned) {
// only abandoned pages; remove from free list and abandon
mi_segment_abandon(segment,tld);
}
else if (segment->used + 1 == segment->capacity) {
mi_assert_internal(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
// move back to segments small pages free list
mi_segment_enqueue(&tld->small_free, segment);
}
}
}
/* -----------------------------------------------------------
Abandonment
----------------------------------------------------------- */
// When threads terminate, they can leave segments with
// live blocks (reached through other threads). Such segments
// are "abandoned" and will be reclaimed by other threads to
// reuse their pages and/or free them eventually
static volatile mi_segment_t* abandoned = NULL;
static volatile uintptr_t abandoned_count = 0;
static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
mi_assert_internal(segment->used == segment->abandoned);
mi_assert_internal(segment->used > 0);
mi_assert_internal(segment->abandoned_next == NULL);
mi_assert_expensive(mi_segment_is_valid(segment));
// remove the segment from the free page queue if needed
if (mi_segment_is_in_free_queue(segment,tld)) {
mi_assert(segment->page_kind == MI_PAGE_SMALL); // for now we only support small pages
mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
mi_segment_queue_remove(&tld->small_free, segment);
}
mi_assert_internal(segment->next == NULL && segment->prev == NULL);
// all pages in the segment are abandoned; add it to the abandoned list
segment->thread_id = 0;
do {
segment->abandoned_next = (mi_segment_t*)abandoned;
} while (!mi_atomic_compare_exchange_ptr((volatile void**)&abandoned, segment, segment->abandoned_next));
mi_atomic_increment(&abandoned_count);
_mi_stat_increase(&tld->stats->segments_abandoned,1);
mi_segments_track_size((long)segment->segment_size, tld);
}
void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) {
mi_assert(page != NULL);
mi_segment_t* segment = _mi_page_segment(page);
mi_assert_expensive(mi_segment_is_valid(segment));
segment->abandoned++;
_mi_stat_increase(&tld->stats->pages_abandoned, 1);
mi_assert_internal(segment->abandoned <= segment->used);
if (segment->used == segment->abandoned) {
// all pages are abandoned, abandon the entire segment
mi_segment_abandon(segment,tld);
}
}
bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld) {
uintptr_t reclaimed = 0;
uintptr_t atmost;
if (try_all) {
atmost = abandoned_count+16; // close enough
}
else {
atmost = abandoned_count/8; // at most 1/8th of all outstanding (estimated)
if (atmost < 8) atmost = 8; // but at least 8
}
// for `atmost` `reclaimed` abandoned segments...
while(atmost > reclaimed) {
// try to claim the head of the abandoned segments
mi_segment_t* segment;
do {
segment = (mi_segment_t*)abandoned;
} while(segment != NULL && !mi_atomic_compare_exchange_ptr((volatile void**)&abandoned, segment->abandoned_next, segment));
if (segment==NULL) break; // stop early if no more segments available
// got it.
mi_atomic_decrement(&abandoned_count);
segment->thread_id = _mi_thread_id();
segment->abandoned_next = NULL;
mi_segments_track_size((long)segment->segment_size,tld);
mi_assert_internal(segment->next == NULL && segment->prev == NULL);
mi_assert_expensive(mi_segment_is_valid(segment));
_mi_stat_decrease(&tld->stats->segments_abandoned,1);
// add its free pages to the the current thread
if (segment->page_kind == MI_PAGE_SMALL && mi_segment_has_free(segment)) {
mi_segment_enqueue(&tld->small_free, segment);
}
// add its abandoned pages to the current thread
mi_assert(segment->abandoned == segment->used);
for (size_t i = 0; i < segment->capacity; i++) {
mi_page_t* page = &segment->pages[i];
if (page->segment_in_use) {
segment->abandoned--;
mi_assert(page->next == NULL);
_mi_stat_decrease(&tld->stats->pages_abandoned, 1);
if (mi_page_all_free(page)) {
// if everything free by now, free the page
mi_segment_page_clear(segment,page,tld->stats);
}
else {
// otherwise reclaim it
_mi_page_reclaim(heap,page);
}
}
}
mi_assert(segment->abandoned == 0);
if (segment->used == 0) { // due to page_clear
mi_segment_free(segment,false,tld);
}
else {
reclaimed++;
}
}
return (reclaimed>0);
}
/* -----------------------------------------------------------
Small page allocation
----------------------------------------------------------- */
// Allocate a small page inside a segment.
// Requires that the page has free pages
static mi_page_t* mi_segment_small_page_alloc_in(mi_segment_t* segment, mi_segments_tld_t* tld) {
mi_assert_internal(mi_segment_has_free(segment));
mi_page_t* page = mi_segment_find_free(segment, tld->stats);
page->segment_in_use = true;
segment->used++;
mi_assert_internal(segment->used <= segment->capacity);
if (segment->used == segment->capacity) {
// if no more free pages, remove from the queue
mi_assert_internal(!mi_segment_has_free(segment));
mi_assert_expensive(mi_segment_queue_contains(&tld->small_free, segment));
mi_segment_queue_remove(&tld->small_free, segment);
}
return page;
}
static mi_page_t* mi_segment_small_page_alloc(mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
if (mi_segment_queue_is_empty(&tld->small_free)) {
mi_segment_t* segment = mi_segment_alloc(0,MI_PAGE_SMALL,MI_SMALL_PAGE_SHIFT,tld,os_tld);
if (segment == NULL) return NULL;
mi_segment_enqueue(&tld->small_free, segment);
}
mi_assert_internal(tld->small_free.first != NULL);
return mi_segment_small_page_alloc_in(tld->small_free.first,tld);
}
/* -----------------------------------------------------------
large page allocation
----------------------------------------------------------- */
static mi_page_t* mi_segment_large_page_alloc(mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
mi_segment_t* segment = mi_segment_alloc(0,MI_PAGE_LARGE,MI_LARGE_PAGE_SHIFT,tld,os_tld);
if (segment == NULL) return NULL;
segment->used = 1;
mi_page_t* page = &segment->pages[0];
page->segment_in_use = true;
return page;
}
static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
mi_segment_t* segment = mi_segment_alloc(size, MI_PAGE_HUGE, MI_SEGMENT_SHIFT,tld,os_tld);
if (segment == NULL) return NULL;
mi_assert_internal(segment->segment_size - segment->segment_info_size >= size);
segment->used = 1;
mi_page_t* page = &segment->pages[0];
page->segment_in_use = true;
return page;
}
/* -----------------------------------------------------------
Page allocation and free
----------------------------------------------------------- */
mi_page_t* _mi_segment_page_alloc(size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
mi_page_t* page;
if (block_size < MI_SMALL_PAGE_SIZE / 8)
// smaller blocks than 8kb (assuming MI_SMALL_PAGE_SIZE == 64kb)
page = mi_segment_small_page_alloc(tld,os_tld);
else if (block_size < (MI_LARGE_SIZE_MAX - sizeof(mi_segment_t)))
page = mi_segment_large_page_alloc(tld, os_tld);
else
page = mi_segment_huge_page_alloc(block_size,tld,os_tld);
mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page)));
return page;
}