mimalloc/src/alloc-aligned.c
2019-06-19 16:26:12 -07:00

146 lines
5.9 KiB
C

/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"license.txt" at the root of this distribution.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include <string.h> // memset
// ------------------------------------------------------
// Aligned Allocation
// ------------------------------------------------------
static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
// note: we don't require `size > offset`, we just guarantee that
// the address at offset is aligned regardless of the allocated size.
mi_assert(alignment > 0);
if (alignment <= sizeof(uintptr_t)) return _mi_heap_malloc_zero(heap,size,zero);
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
// try if there is a current small block with just the right alignment
if (size <= MI_SMALL_SIZE_MAX) {
mi_page_t* page = _mi_heap_get_free_small_page(heap,size);
if (page->free != NULL &&
(((uintptr_t)page->free + offset) % alignment) == 0)
{
#if MI_STAT>1
mi_heap_stat_increase( heap, malloc, size);
#endif
void* p = _mi_page_malloc(heap,page,size);
mi_assert_internal(p != NULL);
mi_assert_internal(((uintptr_t)p + offset) % alignment == 0);
if (zero) memset(p,0,size);
return p;
}
}
// otherwise over-allocate
void* p = _mi_heap_malloc_zero(heap, size + alignment - 1, zero);
if (p == NULL) return NULL;
// .. and align within the allocation
_mi_ptr_page(p)->flags.has_aligned = true;
uintptr_t adjust = alignment - (((uintptr_t)p + offset) % alignment);
mi_assert_internal(adjust % sizeof(uintptr_t) == 0);
void* aligned_p = (adjust == alignment ? p : (void*)((uintptr_t)p + adjust));
mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
mi_assert_internal( p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p),_mi_ptr_page(aligned_p),aligned_p) );
return aligned_p;
}
static void* mi_malloc_zero_aligned_at(size_t size, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
return mi_heap_malloc_zero_aligned_at(mi_get_default_heap(),size,alignment,offset,zero);
}
void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_malloc_zero_aligned_at(size, alignment, offset, false);
}
void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
return mi_malloc_aligned_at(size, alignment, 0);
}
void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_malloc_zero_aligned_at(size,alignment,offset,true);
}
void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
return mi_zalloc_aligned_at(size,alignment,0);
}
void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count,size,&total)) return NULL;
return mi_zalloc_aligned_at(total,alignment,offset);
}
void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count,size,&total)) return NULL;
return mi_zalloc_aligned(total,alignment);
}
static void* mi_realloc_zero_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept {
mi_assert(alignment > 0);
if (alignment <= sizeof(uintptr_t)) return _mi_realloc_zero(p,newsize,zero);
if (p == NULL) return mi_malloc_zero_aligned_at(newsize,alignment,offset,zero);
size_t size = mi_usable_size(p);
if (newsize <= size && newsize >= (size - (size / 2))
&& (((uintptr_t)p + offset) % alignment) == 0) {
return p; // reallocation still fits, is aligned and not more than 50% waste
}
else {
void* newp = mi_malloc_aligned_at(newsize,alignment,offset);
if (newp != NULL) {
if (zero && newsize > size) {
// also set last word in the previous allocation to zero to ensure any padding is zero-initialized
size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
memset((uint8_t*)newp + start, 0, newsize - start);
}
memcpy(newp, p, (newsize > size ? size : newsize));
mi_free(p); // only free if succesfull
}
return newp;
}
}
static void* _mi_realloc_aligned(void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept {
mi_assert(alignment > 0);
if (alignment <= sizeof(uintptr_t)) return _mi_realloc_zero(p,newsize,zero);
size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL)
return mi_realloc_zero_aligned_at(p,newsize,alignment,offset,zero);
}
void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_realloc_zero_aligned_at(p,newsize,alignment,offset,false);
}
void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return _mi_realloc_aligned(p,newsize,alignment,false);
}
void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
return mi_realloc_zero_aligned_at(p,newsize,alignment,offset,true);
}
void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
return _mi_realloc_aligned(p,newsize,alignment,true);
}
void* mi_recalloc_aligned_at(void* p, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count,size,&total)) return NULL;
return mi_rezalloc_aligned_at(p,total,alignment,offset);
}
void* mi_recalloc_aligned(void* p, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count,size,&total)) return NULL;
return mi_rezalloc_aligned(p,total,alignment);
}