mimalloc/include/mimalloc/internal.h
2025-03-05 09:51:40 -08:00

1110 lines
42 KiB
C++

/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MI_INTERNAL_H
#define MI_INTERNAL_H
// --------------------------------------------------------------------------
// This file contains the internal API's of mimalloc and various utility
// functions and macros.
// --------------------------------------------------------------------------
#include "types.h"
#include "track.h"
#include "bits.h"
#define mi_decl_cache_align mi_decl_align(64)
#if defined(_MSC_VER)
#pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths)
#pragma warning(disable:26812) // unscoped enum warning
#define mi_decl_noinline __declspec(noinline)
#define mi_decl_thread __declspec(thread)
#define mi_decl_align(a) __declspec(align(a))
#define mi_decl_weak
#define mi_decl_hidden
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc
#define mi_decl_noinline __attribute__((noinline))
#define mi_decl_thread __thread
#define mi_decl_align(a) __attribute__((aligned(a)))
#define mi_decl_weak __attribute__((weak))
#define mi_decl_hidden __attribute__((visibility("hidden")))
#elif __cplusplus >= 201103L // c++11
#define mi_decl_noinline
#define mi_decl_thread thread_local
#define mi_decl_cache_align alignas(MI_CACHE_LINE)
#define mi_decl_weak
#define mi_decl_hidden
#else
#define mi_decl_noinline
#define mi_decl_thread __thread // hope for the best :-)
#define mi_decl_align(a)
#define mi_decl_weak
#define mi_decl_hidden
#endif
#if (defined(__GNUC__) && (__GNUC__ >= 7)) || defined(__clang__) // includes clang and icc
#define mi_decl_maybe_unused __attribute__((unused))
#elif __cplusplus >= 201703L // c++17
#define mi_decl_maybe_unused [[maybe_unused]]
#else
#define mi_decl_maybe_unused
#endif
#if defined(__cplusplus)
#define mi_decl_externc extern "C"
#else
#define mi_decl_externc
#endif
#if defined(__EMSCRIPTEN__) && !defined(__wasi__)
#define __wasi__
#endif
#if (MI_DEBUG>0)
#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
#else
#define mi_trace_message(...)
#endif
// "libc.c"
#include <stdarg.h>
int _mi_vsnprintf(char* buf, size_t bufsize, const char* fmt, va_list args);
int _mi_snprintf(char* buf, size_t buflen, const char* fmt, ...);
char _mi_toupper(char c);
int _mi_strnicmp(const char* s, const char* t, size_t n);
void _mi_strlcpy(char* dest, const char* src, size_t dest_size);
void _mi_strlcat(char* dest, const char* src, size_t dest_size);
size_t _mi_strlen(const char* s);
size_t _mi_strnlen(const char* s, size_t max_len);
bool _mi_getenv(const char* name, char* result, size_t result_size);
// "options.c"
void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message);
void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...);
void _mi_raw_message(const char* fmt, ...);
void _mi_message(const char* fmt, ...);
void _mi_warning_message(const char* fmt, ...);
void _mi_verbose_message(const char* fmt, ...);
void _mi_trace_message(const char* fmt, ...);
void _mi_options_init(void);
long _mi_option_get_fast(mi_option_t option);
void _mi_error_message(int err, const char* fmt, ...);
// random.c
void _mi_random_init(mi_random_ctx_t* ctx);
void _mi_random_init_weak(mi_random_ctx_t* ctx);
void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx);
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx);
uintptr_t _mi_random_next(mi_random_ctx_t* ctx);
uintptr_t _mi_heap_random_next(mi_heap_t* heap);
uintptr_t _mi_os_random_weak(uintptr_t extra_seed);
static inline uintptr_t _mi_random_shuffle(uintptr_t x);
// init.c
extern mi_decl_hidden mi_decl_cache_align const mi_page_t _mi_page_empty;
void _mi_process_load(void);
void mi_cdecl _mi_process_done(void);
bool _mi_is_redirected(void);
bool _mi_allocator_init(const char** message);
void _mi_allocator_done(void);
bool _mi_is_main_thread(void);
size_t _mi_current_thread_count(void);
bool _mi_preloading(void); // true while the C runtime is not initialized yet
void _mi_thread_done(mi_heap_t* heap);
mi_subproc_t* _mi_subproc(void);
mi_subproc_t* _mi_subproc_main(void);
mi_subproc_t* _mi_subproc_from_id(mi_subproc_id_t subproc_id);
mi_threadid_t _mi_thread_id(void) mi_attr_noexcept;
size_t _mi_thread_seq_id(void) mi_attr_noexcept;
mi_tld_t* _mi_thread_tld(void) mi_attr_noexcept;
void _mi_heap_guarded_init(mi_heap_t* heap);
mi_heap_t* _mi_heap_main_get(void);
// os.c
void _mi_os_init(void); // called from process init
void* _mi_os_alloc(size_t size, mi_memid_t* memid);
void* _mi_os_zalloc(size_t size, mi_memid_t* memid);
void _mi_os_free(void* p, size_t size, mi_memid_t memid);
void _mi_os_free_ex(void* p, size_t size, bool still_committed, mi_memid_t memid);
size_t _mi_os_page_size(void);
size_t _mi_os_guard_page_size(void);
size_t _mi_os_good_alloc_size(size_t size);
bool _mi_os_has_overcommit(void);
bool _mi_os_has_virtual_reserve(void);
size_t _mi_os_virtual_address_bits(void);
bool _mi_os_reset(void* addr, size_t size);
bool _mi_os_commit(void* p, size_t size, bool* is_zero);
bool _mi_os_decommit(void* addr, size_t size);
bool _mi_os_protect(void* addr, size_t size);
bool _mi_os_unprotect(void* addr, size_t size);
bool _mi_os_purge(void* p, size_t size);
bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, size_t stats_size);
bool _mi_os_commit_ex(void* addr, size_t size, bool* is_zero, size_t stat_size);
size_t _mi_os_secure_guard_page_size(void);
bool _mi_os_secure_guard_page_set_at(void* addr, bool is_pinned);
bool _mi_os_secure_guard_page_set_before(void* addr, bool is_pinned);
bool _mi_os_secure_guard_page_reset_at(void* addr);
bool _mi_os_secure_guard_page_reset_before(void* addr);
int _mi_os_numa_node(void);
int _mi_os_numa_node_count(void);
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid);
void* _mi_os_alloc_aligned_at_offset(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large, mi_memid_t* memid);
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size);
bool _mi_os_use_large_page(size_t size, size_t alignment);
size_t _mi_os_large_page_size(void);
void* _mi_os_alloc_huge_os_pages(size_t pages, int numa_node, mi_msecs_t max_secs, size_t* pages_reserved, size_t* psize, mi_memid_t* memid);
// arena.c
mi_arena_id_t _mi_arena_id_none(void);
mi_arena_t* _mi_arena_from_id(mi_arena_id_t id);
bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_t* request_arena);
void* _mi_arenas_alloc(mi_subproc_t* subproc, size_t size, bool commit, bool allow_pinned, mi_arena_t* req_arena, size_t tseq, int numa_node, mi_memid_t* memid);
void* _mi_arenas_alloc_aligned(mi_subproc_t* subproc, size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_pinned, mi_arena_t* req_arena, size_t tseq, int numa_node, mi_memid_t* memid);
void _mi_arenas_free(void* p, size_t size, mi_memid_t memid);
bool _mi_arenas_contain(const void* p);
void _mi_arenas_collect(bool force_purge, bool visit_all, mi_tld_t* tld);
void _mi_arenas_unsafe_destroy_all(mi_tld_t* tld);
mi_page_t* _mi_arenas_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment);
void _mi_arenas_page_free(mi_page_t* page);
void _mi_arenas_page_abandon(mi_page_t* page, mi_tld_t* tld);
void _mi_arenas_page_unabandon(mi_page_t* page);
bool _mi_arenas_page_try_reabandon_to_mapped(mi_page_t* page);
// arena-meta.c
void* _mi_meta_zalloc( size_t size, mi_memid_t* memid );
void _mi_meta_free(void* p, size_t size, mi_memid_t memid);
bool _mi_meta_is_meta_page(void* p);
// "page-map.c"
bool _mi_page_map_init(void);
void _mi_page_map_register(mi_page_t* page);
void _mi_page_map_unregister(mi_page_t* page);
void _mi_page_map_unregister_range(void* start, size_t size);
mi_page_t* _mi_safe_ptr_page(const void* p);
// "page.c"
void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept mi_attr_malloc;
void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; // free the page if there are no other pages with many free blocks
void _mi_page_unfull(mi_page_t* page);
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq); // free the page
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
void _mi_deferred_free(mi_heap_t* heap, bool force);
void _mi_page_free_collect(mi_page_t* page, bool force);
void _mi_page_free_collect_partly(mi_page_t* page, mi_block_t* head);
void _mi_page_init(mi_heap_t* heap, mi_page_t* page);
bool _mi_page_queue_is_valid(mi_heap_t* heap, const mi_page_queue_t* pq);
size_t _mi_bin_size(size_t bin); // for stats
size_t _mi_bin(size_t size); // for stats
// "heap.c"
mi_heap_t* _mi_heap_create(int heap_tag, bool allow_destroy, mi_arena_id_t arena_id, mi_tld_t* tld);
void _mi_heap_init(mi_heap_t* heap, mi_arena_id_t arena_id, bool noreclaim, uint8_t tag, mi_tld_t* tld);
void _mi_heap_destroy_pages(mi_heap_t* heap);
void _mi_heap_collect_abandon(mi_heap_t* heap);
void _mi_heap_set_default_direct(mi_heap_t* heap);
bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid);
void _mi_heap_unsafe_destroy_all(mi_heap_t* heap);
mi_heap_t* _mi_heap_by_tag(mi_heap_t* heap, uint8_t tag);
void _mi_heap_area_init(mi_heap_area_t* area, mi_page_t* page);
bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t* page, mi_block_visit_fun* visitor, void* arg);
void _mi_heap_page_reclaim(mi_heap_t* heap, mi_page_t* page);
// "stats.c"
void _mi_stats_done(mi_stats_t* stats);
void _mi_stats_merge_from(mi_stats_t* to, mi_stats_t* from);
mi_msecs_t _mi_clock_now(void);
mi_msecs_t _mi_clock_end(mi_msecs_t start);
mi_msecs_t _mi_clock_start(void);
// "alloc.c"
void* _mi_page_malloc_zero(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept; // called from `_mi_malloc_generic`
void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned`
void* _mi_page_malloc_zeroed(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned`
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned`
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept;
mi_block_t* _mi_page_ptr_unalign(const mi_page_t* page, const void* p);
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size);
#if MI_DEBUG>1
bool _mi_page_is_valid(mi_page_t* page);
#endif
// ------------------------------------------------------
// Branches
// ------------------------------------------------------
#if defined(__GNUC__) || defined(__clang__)
#define mi_unlikely(x) (__builtin_expect(!!(x),false))
#define mi_likely(x) (__builtin_expect(!!(x),true))
#elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
#define mi_unlikely(x) (x) [[unlikely]]
#define mi_likely(x) (x) [[likely]]
#else
#define mi_unlikely(x) (x)
#define mi_likely(x) (x)
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
/* -----------------------------------------------------------
Assertions
----------------------------------------------------------- */
#if (MI_DEBUG)
// use our own assertion to print without memory allocation
void _mi_assert_fail(const char* assertion, const char* fname, unsigned int line, const char* func);
#define mi_assert(expr) ((expr) ? (void)0 : _mi_assert_fail(#expr,__FILE__,__LINE__,__func__))
#else
#define mi_assert(x)
#endif
#if (MI_DEBUG>1)
#define mi_assert_internal mi_assert
#else
#define mi_assert_internal(x)
#endif
#if (MI_DEBUG>2)
#define mi_assert_expensive mi_assert
#else
#define mi_assert_expensive(x)
#endif
/* -----------------------------------------------------------
Inlined definitions
----------------------------------------------------------- */
#define MI_UNUSED(x) (void)(x)
#if (MI_DEBUG>0)
#define MI_UNUSED_RELEASE(x)
#else
#define MI_UNUSED_RELEASE(x) MI_UNUSED(x)
#endif
#define MI_INIT4(x) x(),x(),x(),x()
#define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x)
#define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x)
#define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x)
#define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x)
#define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x)
#define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x)
#define MI_INIT74(x) MI_INIT64(x),MI_INIT8(x),x(),x()
#include <string.h>
// initialize a local variable to zero; use memset as compilers optimize constant sized memset's
#define _mi_memzero_var(x) memset(&x,0,sizeof(x))
// Is `x` a power of two? (0 is considered a power of two)
static inline bool _mi_is_power_of_two(uintptr_t x) {
return ((x & (x - 1)) == 0);
}
// Is a pointer aligned?
static inline bool _mi_is_aligned(void* p, size_t alignment) {
mi_assert_internal(alignment != 0);
return (((uintptr_t)p % alignment) == 0);
}
// Align upwards
static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
mi_assert_internal(alignment != 0);
uintptr_t mask = alignment - 1;
if ((alignment & mask) == 0) { // power of two?
return ((sz + mask) & ~mask);
}
else {
return (((sz + mask)/alignment)*alignment);
}
}
// Align a pointer upwards
static inline uint8_t* _mi_align_up_ptr(void* p, size_t alignment) {
return (uint8_t*)_mi_align_up((uintptr_t)p, alignment);
}
static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) {
mi_assert_internal(alignment != 0);
uintptr_t mask = alignment - 1;
if ((alignment & mask) == 0) { // power of two?
return (sz & ~mask);
}
else {
return ((sz / alignment) * alignment);
}
}
static inline void* mi_align_down_ptr(void* p, size_t alignment) {
return (void*)_mi_align_down((uintptr_t)p, alignment);
}
// Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`.
static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) {
mi_assert_internal(divider != 0);
return (divider == 0 ? size : ((size + divider - 1) / divider));
}
// clamp an integer
static inline size_t _mi_clamp(size_t sz, size_t min, size_t max) {
if (sz < min) return min;
else if (sz > max) return max;
else return sz;
}
// Is memory zero initialized?
static inline bool mi_mem_is_zero(const void* p, size_t size) {
for (size_t i = 0; i < size; i++) {
if (((uint8_t*)p)[i] != 0) return false;
}
return true;
}
// Align a byte size to a size in _machine words_,
// i.e. byte size == `wsize*sizeof(void*)`.
static inline size_t _mi_wsize_from_size(size_t size) {
mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t));
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}
// Overflow detecting multiply
#if __has_builtin(__builtin_umul_overflow) || (defined(__GNUC__) && (__GNUC__ >= 5))
#include <limits.h> // UINT_MAX, ULONG_MAX
#if defined(_CLOCK_T) // for Illumos
#undef _CLOCK_T
#endif
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
#if (SIZE_MAX == ULONG_MAX)
return __builtin_umull_overflow(count, size, (unsigned long *)total);
#elif (SIZE_MAX == UINT_MAX)
return __builtin_umul_overflow(count, size, (unsigned int *)total);
#else
return __builtin_umulll_overflow(count, size, (unsigned long long *)total);
#endif
}
#else /* __builtin_umul_overflow is unavailable */
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
#define MI_MUL_COULD_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
*total = count * size;
// note: gcc/clang optimize this to directly check the overflow flag
return ((size >= MI_MUL_COULD_OVERFLOW || count >= MI_MUL_COULD_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count);
}
#endif
// Safe multiply `count*size` into `total`; return `true` on overflow.
static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) {
if (count==1) { // quick check for the case where count is one (common for C++ allocators)
*total = size;
return false;
}
else if mi_unlikely(mi_mul_overflow(count, size, total)) {
#if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size);
#endif
*total = SIZE_MAX;
return true;
}
else return false;
}
/*----------------------------------------------------------------------------------------
Heap functions
------------------------------------------------------------------------------------------- */
extern mi_decl_hidden const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap
static inline bool mi_heap_is_backing(const mi_heap_t* heap) {
return (heap->tld->heap_backing == heap);
}
static inline bool mi_heap_is_initialized(const mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
return (heap != NULL && heap != &_mi_heap_empty);
}
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
const size_t idx = _mi_wsize_from_size(size);
mi_assert_internal(idx < MI_PAGES_DIRECT);
return heap->pages_free_direct[idx];
}
//static inline uintptr_t _mi_ptr_cookie(const void* p) {
// extern mi_heap_t _mi_heap_main;
// mi_assert_internal(_mi_heap_main.cookie != 0);
// return ((uintptr_t)p ^ _mi_heap_main.cookie);
//}
/* -----------------------------------------------------------
The page map maps addresses to `mi_page_t` pointers
----------------------------------------------------------- */
#if MI_PAGE_MAP_FLAT
// flat page-map committed on demand, using one byte per slice (64 KiB).
// single indirection and low commit, but large initial virtual reserve (4 GiB with 48 bit virtual addresses)
// used by default on <= 40 bit virtual address spaces.
extern mi_decl_hidden uint8_t* _mi_page_map;
static inline size_t _mi_page_map_index(const void* p) {
return (size_t)((uintptr_t)p >> MI_ARENA_SLICE_SHIFT);
}
static inline mi_page_t* _mi_ptr_page_ex(const void* p, bool* valid) {
const size_t idx = _mi_page_map_index(p);
const size_t ofs = _mi_page_map[idx];
if (valid != NULL) { *valid = (ofs != 0); }
return (mi_page_t*)((((uintptr_t)p >> MI_ARENA_SLICE_SHIFT) + 1 - ofs) << MI_ARENA_SLICE_SHIFT);
}
static inline mi_page_t* _mi_checked_ptr_page(const void* p) {
bool valid;
mi_page_t* const page = _mi_ptr_page_ex(p, &valid);
return (valid ? page : NULL);
}
static inline mi_page_t* _mi_unchecked_ptr_page(const void* p) {
return _mi_ptr_page_ex(p, NULL);
}
#else
// 2-level page map:
// double indirection, but low commit and low virtual reserve.
//
// the page-map is usually 4 MiB (for 48 bits virtual addresses) and points to sub maps of 64 KiB.
// the page-map is committed on-demand (in 64 KiB parts) (and sub-maps are committed on-demand as well)
// one sub page-map = 64 KiB => covers 2^(16-3) * 2^16 = 2^29 = 512 MiB address space
// the page-map needs 48-(16+13) = 19 bits => 2^19 sub map pointers = 4 MiB size.
#define MI_PAGE_MAP_SUB_SHIFT (13)
#define MI_PAGE_MAP_SUB_COUNT (MI_ZU(1) << MI_PAGE_MAP_SUB_SHIFT)
#define MI_PAGE_MAP_SHIFT (MI_MAX_VABITS - MI_PAGE_MAP_SUB_SHIFT - MI_ARENA_SLICE_SHIFT)
#define MI_PAGE_MAP_COUNT (MI_ZU(1) << MI_PAGE_MAP_SHIFT)
extern mi_decl_hidden mi_page_t*** _mi_page_map;
static inline size_t _mi_page_map_index(const void* p, size_t* sub_idx) {
const size_t u = (size_t)((uintptr_t)p / MI_ARENA_SLICE_SIZE);
if (sub_idx != NULL) { *sub_idx = u % MI_PAGE_MAP_SUB_COUNT; }
return (u / MI_PAGE_MAP_SUB_COUNT);
}
static inline mi_page_t* _mi_unchecked_ptr_page(const void* p) {
size_t sub_idx;
const size_t idx = _mi_page_map_index(p, &sub_idx);
return _mi_page_map[idx][sub_idx];
}
static inline mi_page_t* _mi_checked_ptr_page(const void* p) {
size_t sub_idx;
const size_t idx = _mi_page_map_index(p, &sub_idx);
mi_page_t** const sub = _mi_page_map[idx];
if mi_unlikely(sub == NULL) return (mi_page_t*)&_mi_page_empty;
return sub[sub_idx];
}
#endif
static inline mi_page_t* _mi_ptr_page(const void* p) {
mi_assert_internal(p==NULL || mi_is_in_heap_region(p));
#if MI_DEBUG || defined(__APPLE__)
return _mi_checked_ptr_page(p);
#else
return _mi_unchecked_ptr_page(p);
#endif
}
// Get the block size of a page
static inline size_t mi_page_block_size(const mi_page_t* page) {
mi_assert_internal(page->block_size > 0);
return page->block_size;
}
// Page start
static inline uint8_t* mi_page_start(const mi_page_t* page) {
return page->page_start;
}
static inline size_t mi_page_size(const mi_page_t* page) {
return mi_page_block_size(page) * page->reserved;
}
static inline uint8_t* mi_page_area(const mi_page_t* page, size_t* size) {
if (size) { *size = mi_page_size(page); }
return mi_page_start(page);
}
static inline size_t mi_page_info_size(void) {
return _mi_align_up(sizeof(mi_page_t), MI_MAX_ALIGN_SIZE);
}
static inline bool mi_page_contains_address(const mi_page_t* page, const void* p) {
size_t psize;
uint8_t* start = mi_page_area(page, &psize);
return (start <= (uint8_t*)p && (uint8_t*)p < start + psize);
}
static inline bool mi_page_is_in_arena(const mi_page_t* page) {
return (page->memid.memkind == MI_MEM_ARENA);
}
static inline bool mi_page_is_singleton(const mi_page_t* page) {
return (page->reserved == 1);
}
// Get the usable block size of a page without fixed padding.
// This may still include internal padding due to alignment and rounding up size classes.
static inline size_t mi_page_usable_block_size(const mi_page_t* page) {
return mi_page_block_size(page) - MI_PADDING_SIZE;
}
// This may change if we locate page info outside the page data slices
static inline uint8_t* mi_page_slice_start(const mi_page_t* page) {
return (uint8_t*)page;
}
// This gives the offset relative to the start slice of a page. This may change if we ever
// locate page info outside the page-data itself.
static inline size_t mi_page_slice_offset_of(const mi_page_t* page, size_t offset_relative_to_page_start) {
return (page->page_start - mi_page_slice_start(page)) + offset_relative_to_page_start;
}
static inline size_t mi_page_committed(const mi_page_t* page) {
return (page->slice_committed == 0 ? mi_page_size(page) : page->slice_committed - (page->page_start - mi_page_slice_start(page)));
}
static inline mi_heap_t* mi_page_heap(const mi_page_t* page) {
return page->heap;
}
// are all blocks in a page freed?
// note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`.
static inline bool mi_page_all_free(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->used == 0);
}
// are there immediately available blocks, i.e. blocks available on the free list.
static inline bool mi_page_immediate_available(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->free != NULL);
}
// is the page not yet used up to its reserved space?
static inline bool mi_page_is_expandable(const mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_internal(page->capacity <= page->reserved);
return (page->capacity < page->reserved);
}
static inline bool mi_page_is_full(mi_page_t* page) {
bool full = (page->reserved == page->used);
mi_assert_internal(!full || page->free == NULL);
return full;
}
// is more than 7/8th of a page in use?
static inline bool mi_page_is_mostly_used(const mi_page_t* page) {
if (page==NULL) return true;
uint16_t frac = page->reserved / 8U;
return (page->reserved - page->used <= frac);
}
// is more than (n-1)/n'th of a page in use?
static inline bool mi_page_is_used_at_frac(const mi_page_t* page, uint16_t n) {
if (page==NULL) return true;
uint16_t frac = page->reserved / n;
return (page->reserved - page->used <= frac);
}
static inline bool mi_page_is_huge(const mi_page_t* page) {
return (mi_page_is_singleton(page) &&
(page->block_size > MI_LARGE_MAX_OBJ_SIZE ||
(mi_memkind_is_os(page->memid.memkind) && page->memid.mem.os.base < (void*)page)));
}
static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) {
mi_page_queue_t* const pq = &((mi_heap_t*)heap)->pages[_mi_bin(size)];
if (size <= MI_LARGE_MAX_OBJ_SIZE) { mi_assert_internal(pq->block_size <= MI_LARGE_MAX_OBJ_SIZE); }
return pq;
}
//-----------------------------------------------------------
// Page thread id and flags
//-----------------------------------------------------------
// Thread id of thread that owns this page (with flags in the bottom 2 bits)
static inline mi_threadid_t mi_page_xthread_id(const mi_page_t* page) {
return mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_id);
}
// Plain thread id of the thread that owns this page
static inline mi_threadid_t mi_page_thread_id(const mi_page_t* page) {
return (mi_page_xthread_id(page) & ~MI_PAGE_FLAG_MASK);
}
static inline mi_page_flags_t mi_page_flags(const mi_page_t* page) {
return (mi_page_xthread_id(page) & MI_PAGE_FLAG_MASK);
}
static inline void mi_page_flags_set(mi_page_t* page, bool set, mi_page_flags_t newflag) {
if (set) { mi_atomic_or_relaxed(&page->xthread_id, newflag); }
else { mi_atomic_and_relaxed(&page->xthread_id, ~newflag); }
}
static inline bool mi_page_is_in_full(const mi_page_t* page) {
return ((mi_page_flags(page) & MI_PAGE_IN_FULL_QUEUE) != 0);
}
static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) {
mi_page_flags_set(page, in_full, MI_PAGE_IN_FULL_QUEUE);
}
static inline bool mi_page_has_aligned(const mi_page_t* page) {
return ((mi_page_flags(page) & MI_PAGE_HAS_ALIGNED) != 0);
}
static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
mi_page_flags_set(page, has_aligned, MI_PAGE_HAS_ALIGNED);
}
static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) {
// mi_assert_internal(!mi_page_is_in_full(page)); // can happen when destroying pages on heap_destroy
const mi_threadid_t tid = (heap == NULL ? MI_THREADID_ABANDONED : heap->tld->thread_id) | mi_page_flags(page);
if (heap != NULL) {
page->heap = heap;
page->heap_tag = heap->tag;
}
else {
page->heap = NULL;
}
mi_atomic_store_release(&page->xthread_id, tid);
}
static inline bool mi_page_is_abandoned(const mi_page_t* page) {
// note: the xheap field of an abandoned heap is set to the subproc (for fast reclaim-on-free)
return (mi_page_thread_id(page) <= MI_THREADID_ABANDONED_MAPPED);
}
static inline bool mi_page_is_abandoned_mapped(const mi_page_t* page) {
return (mi_page_thread_id(page) == MI_THREADID_ABANDONED_MAPPED);
}
static inline void mi_page_set_abandoned_mapped(mi_page_t* page) {
mi_assert_internal(mi_page_is_abandoned(page));
mi_atomic_or_relaxed(&page->xthread_id, MI_THREADID_ABANDONED_MAPPED);
}
static inline void mi_page_clear_abandoned_mapped(mi_page_t* page) {
mi_assert_internal(mi_page_is_abandoned_mapped(page));
mi_atomic_and_relaxed(&page->xthread_id, MI_PAGE_FLAG_MASK);
}
//-----------------------------------------------------------
// Thread free list and ownership
//-----------------------------------------------------------
// Thread free flag helpers
static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) {
return (mi_block_t*)(tf & ~1);
}
static inline bool mi_tf_is_owned(mi_thread_free_t tf) {
return ((tf & 1) == 1);
}
static inline mi_thread_free_t mi_tf_create(mi_block_t* block, bool owned) {
return (mi_thread_free_t)((uintptr_t)block | (owned ? 1 : 0));
}
// Thread free access
static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) {
return mi_tf_block(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free));
}
// are there any available blocks?
static inline bool mi_page_has_any_available(const mi_page_t* page) {
mi_assert_internal(page != NULL && page->reserved > 0);
return (page->used < page->reserved || (mi_page_thread_free(page) != NULL));
}
// Owned?
static inline bool mi_page_is_owned(const mi_page_t* page) {
return mi_tf_is_owned(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free));
}
// Unown a page that is currently owned
static inline void _mi_page_unown_unconditional(mi_page_t* page) {
mi_assert_internal(mi_page_is_owned(page));
mi_assert_internal(mi_page_thread_id(page)==0);
const uintptr_t old = mi_atomic_and_acq_rel(&page->xthread_free, ~((uintptr_t)1));
mi_assert_internal((old&1)==1); MI_UNUSED(old);
}
// get ownership if it is not yet owned
static inline bool mi_page_try_claim_ownership(mi_page_t* page) {
const uintptr_t old = mi_atomic_or_acq_rel(&page->xthread_free, 1);
return ((old&1)==0);
}
// release ownership of a page. This may free the page if all blocks were concurrently
// freed in the meantime. Returns true if the page was freed.
static inline bool _mi_page_unown(mi_page_t* page) {
mi_assert_internal(mi_page_is_owned(page));
mi_assert_internal(mi_page_is_abandoned(page));
mi_thread_free_t tf_new;
mi_thread_free_t tf_old = mi_atomic_load_relaxed(&page->xthread_free);
do {
mi_assert_internal(mi_tf_is_owned(tf_old));
while mi_unlikely(mi_tf_block(tf_old) != NULL) {
_mi_page_free_collect(page, false); // update used
if (mi_page_all_free(page)) { // it may become free just before unowning it
_mi_arenas_page_unabandon(page);
_mi_arenas_page_free(page);
return true;
}
tf_old = mi_atomic_load_relaxed(&page->xthread_free);
}
mi_assert_internal(mi_tf_block(tf_old)==NULL);
tf_new = mi_tf_create(NULL, false);
} while (!mi_atomic_cas_weak_acq_rel(&page->xthread_free, &tf_old, tf_new));
return false;
}
/* -------------------------------------------------------------------
Guarded objects
------------------------------------------------------------------- */
#if MI_GUARDED
// we always align guarded pointers in a block at an offset
// the block `next` field is then used as a tag to distinguish regular offset aligned blocks from guarded ones
#define MI_BLOCK_TAG_ALIGNED ((mi_encoded_t)(0))
#define MI_BLOCK_TAG_GUARDED (~MI_BLOCK_TAG_ALIGNED)
static inline bool mi_block_ptr_is_guarded(const mi_block_t* block, const void* p) {
const ptrdiff_t offset = (uint8_t*)p - (uint8_t*)block;
return (offset >= (ptrdiff_t)(sizeof(mi_block_t)) && block->next == MI_BLOCK_TAG_GUARDED);
}
static inline bool mi_heap_malloc_use_guarded(mi_heap_t* heap, size_t size) {
// this code is written to result in fast assembly as it is on the hot path for allocation
const size_t count = heap->guarded_sample_count - 1; // if the rate was 0, this will underflow and count for a long time..
if mi_likely(count != 0) {
// no sample
heap->guarded_sample_count = count;
return false;
}
else if (size >= heap->guarded_size_min && size <= heap->guarded_size_max) {
// use guarded allocation
heap->guarded_sample_count = heap->guarded_sample_rate; // reset
return (heap->guarded_sample_rate != 0);
}
else {
// failed size criteria, rewind count (but don't write to an empty heap)
if (heap->guarded_sample_rate != 0) { heap->guarded_sample_count = 1; }
return false;
}
}
mi_decl_restrict void* _mi_heap_malloc_guarded(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
#endif
/* -------------------------------------------------------------------
Encoding/Decoding the free list next pointers
This is to protect against buffer overflow exploits where the
free list is mutated. Many hardened allocators xor the next pointer `p`
with a secret key `k1`, as `p^k1`. This prevents overwriting with known
values but might be still too weak: if the attacker can guess
the pointer `p` this can reveal `k1` (since `p^k1^p == k1`).
Moreover, if multiple blocks can be read as well, the attacker can
xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot
about the pointers (and subsequently `k1`).
Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`.
Since these operations are not associative, the above approaches do not
work so well any more even if the `p` can be guesstimated. For example,
for the read case we can subtract two entries to discard the `+k1` term,
but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best.
We include the left-rotation since xor and addition are otherwise linear
in the lowest bit. Finally, both keys are unique per page which reduces
the re-use of keys by a large factor.
We also pass a separate `null` value to be used as `NULL` or otherwise
`(k2<<<k1)+k1` would appear (too) often as a sentinel value.
------------------------------------------------------------------- */
static inline bool mi_is_in_same_page(const void* p, const void* q) {
mi_page_t* page = _mi_ptr_page(p);
return mi_page_contains_address(page,q);
// return (_mi_ptr_page(p) == _mi_ptr_page(q));
}
static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) {
void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]);
return (p==null ? NULL : p);
}
static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) {
uintptr_t x = (uintptr_t)(p==NULL ? null : p);
return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
}
static inline uint32_t mi_ptr_encode_canary(const void* null, const void* p, const uintptr_t* keys) {
const uint32_t x = (uint32_t)(mi_ptr_encode(null,p,keys));
// make the lowest byte 0 to prevent spurious read overflows which could be a security issue (issue #951)
#if MI_BIG_ENDIAN
return (x & 0x00FFFFFF);
#else
return (x & 0xFFFFFF00);
#endif
}
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) {
mi_track_mem_defined(block,sizeof(mi_block_t));
mi_block_t* next;
#ifdef MI_ENCODE_FREELIST
next = (mi_block_t*)mi_ptr_decode(null, block->next, keys);
#else
MI_UNUSED(keys); MI_UNUSED(null);
next = (mi_block_t*)block->next;
#endif
mi_track_mem_noaccess(block,sizeof(mi_block_t));
return next;
}
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) {
mi_track_mem_undefined(block,sizeof(mi_block_t));
#ifdef MI_ENCODE_FREELIST
block->next = mi_ptr_encode(null, next, keys);
#else
MI_UNUSED(keys); MI_UNUSED(null);
block->next = (mi_encoded_t)next;
#endif
mi_track_mem_noaccess(block,sizeof(mi_block_t));
}
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
#ifdef MI_ENCODE_FREELIST
mi_block_t* next = mi_block_nextx(page,block,page->keys);
// check for free list corruption: is `next` at least in the same page?
// TODO: check if `next` is `page->block_size` aligned?
if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) {
_mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next);
next = NULL;
}
return next;
#else
MI_UNUSED(page);
return mi_block_nextx(page,block,NULL);
#endif
}
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
#ifdef MI_ENCODE_FREELIST
mi_block_set_nextx(page,block,next, page->keys);
#else
MI_UNUSED(page);
mi_block_set_nextx(page,block,next,NULL);
#endif
}
/* -----------------------------------------------------------
arena blocks
----------------------------------------------------------- */
// Blocks needed for a given byte size
static inline size_t mi_slice_count_of_size(size_t size) {
return _mi_divide_up(size, MI_ARENA_SLICE_SIZE);
}
// Byte size of a number of blocks
static inline size_t mi_size_of_slices(size_t bcount) {
return (bcount * MI_ARENA_SLICE_SIZE);
}
/* -----------------------------------------------------------
memory id's
----------------------------------------------------------- */
static inline mi_memid_t _mi_memid_create(mi_memkind_t memkind) {
mi_memid_t memid;
_mi_memzero_var(memid);
memid.memkind = memkind;
return memid;
}
static inline mi_memid_t _mi_memid_none(void) {
return _mi_memid_create(MI_MEM_NONE);
}
static inline mi_memid_t _mi_memid_create_os(void* base, size_t size, bool committed, bool is_zero, bool is_large) {
mi_memid_t memid = _mi_memid_create(MI_MEM_OS);
memid.mem.os.base = base;
memid.mem.os.size = size;
memid.initially_committed = committed;
memid.initially_zero = is_zero;
memid.is_pinned = is_large;
return memid;
}
static inline mi_memid_t _mi_memid_create_meta(void* mpage, size_t block_idx, size_t block_count) {
mi_memid_t memid = _mi_memid_create(MI_MEM_META);
memid.mem.meta.meta_page = mpage;
memid.mem.meta.block_index = (uint32_t)block_idx;
memid.mem.meta.block_count = (uint32_t)block_count;
memid.initially_committed = true;
memid.initially_zero = true;
memid.is_pinned = true;
return memid;
}
// -------------------------------------------------------------------
// Fast "random" shuffle
// -------------------------------------------------------------------
static inline uintptr_t _mi_random_shuffle(uintptr_t x) {
if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros
#if (MI_INTPTR_SIZE>=8)
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
x ^= x >> 30;
x *= 0xbf58476d1ce4e5b9UL;
x ^= x >> 27;
x *= 0x94d049bb133111ebUL;
x ^= x >> 31;
#elif (MI_INTPTR_SIZE==4)
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
x ^= x >> 16;
x *= 0x7feb352dUL;
x ^= x >> 15;
x *= 0x846ca68bUL;
x ^= x >> 16;
#endif
return x;
}
// ---------------------------------------------------------------------------------
// Provide our own `_mi_memcpy` for potential performance optimizations.
//
// For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if
// we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support
// (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253.
// ---------------------------------------------------------------------------------
#if !MI_TRACK_ENABLED && defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
#include <intrin.h>
extern bool _mi_cpu_has_fsrm;
extern bool _mi_cpu_has_erms;
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
if ((_mi_cpu_has_fsrm && n <= 128) || (_mi_cpu_has_erms && n > 128)) {
__movsb((unsigned char*)dst, (const unsigned char*)src, n);
}
else {
memcpy(dst, src, n);
}
}
static inline void _mi_memset(void* dst, int val, size_t n) {
if ((_mi_cpu_has_fsrm && n <= 128) || (_mi_cpu_has_erms && n > 128)) {
__stosb((unsigned char*)dst, (uint8_t)val, n);
}
else {
memset(dst, val, n);
}
}
#else
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
memcpy(dst, src, n);
}
static inline void _mi_memset(void* dst, int val, size_t n) {
memset(dst, val, n);
}
#endif
// -------------------------------------------------------------------------------
// The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned
// This is used for example in `mi_realloc`.
// -------------------------------------------------------------------------------
#if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__)
// On GCC/CLang we provide a hint that the pointers are word aligned.
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE);
_mi_memcpy(adst, asrc, n);
}
static inline void _mi_memset_aligned(void* dst, int val, size_t n) {
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
_mi_memset(adst, val, n);
}
#else
// Default fallback on `_mi_memcpy`
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
_mi_memcpy(dst, src, n);
}
static inline void _mi_memset_aligned(void* dst, int val, size_t n) {
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
_mi_memset(dst, val, n);
}
#endif
static inline void _mi_memzero(void* dst, size_t n) {
_mi_memset(dst, 0, n);
}
static inline void _mi_memzero_aligned(void* dst, size_t n) {
_mi_memset_aligned(dst, 0, n);
}
#endif // MI_INTERNAL_H