/* ---------------------------------------------------------------------------- Copyright (c) 2018-2024, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #if !defined(MI_IN_ALLOC_C) #error "this file should be included from 'alloc.c' (so aliases can work from alloc-override)" // add includes help an IDE #include "mimalloc.h" #include "mimalloc/internal.h" #include "mimalloc/atomic.h" #include "mimalloc/prim.h" // _mi_prim_thread_id() #endif // forward declarations static void mi_check_padding(const mi_page_t* page, const mi_block_t* block); static bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block); static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block); static void mi_stat_free(const mi_page_t* page, const mi_block_t* block); // ------------------------------------------------------ // Free // ------------------------------------------------------ // forward declaration of multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON) static mi_decl_noinline void mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block); // regular free of a (thread local) block pointer // fast path written carefully to prevent spilling on the stack static inline void mi_free_block_local(mi_page_t* page, mi_block_t* block, bool track_stats, bool check_full) { // checks if mi_unlikely(mi_check_is_double_free(page, block)) return; mi_check_padding(page, block); if (track_stats) { mi_stat_free(page, block); } #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); #endif if (track_stats) { mi_track_free_size(block, mi_page_usable_size_of(page, block)); } // faster then mi_usable_size as we already know the page and that p is unaligned // actual free: push on the local free list mi_block_set_next(page, block, page->local_free); page->local_free = block; if mi_unlikely(--page->used == 0) { _mi_page_retire(page); } else if mi_unlikely(check_full && mi_page_is_in_full(page)) { _mi_page_unfull(page); } } // Adjust a block that was allocated aligned, to the actual start of the block in the page. // note: this can be called from `mi_free_generic_mt` where a non-owning thread accesses the // `page_start` and `block_size` fields; however these are constant and the page won't be // deallocated (as the block we are freeing keeps it alive) and thus safe to read concurrently. mi_block_t* _mi_page_ptr_unalign(const mi_page_t* page, const void* p) { mi_assert_internal(page!=NULL && p!=NULL); size_t diff = (uint8_t*)p - page->page_start; size_t adjust; if mi_likely(page->block_size_shift != 0) { adjust = diff & (((size_t)1 << page->block_size_shift) - 1); } else { adjust = diff % mi_page_block_size(page); } return (mi_block_t*)((uintptr_t)p - adjust); } // free a local pointer (page parameter comes first for better codegen) static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept { MI_UNUSED(segment); mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(page, p) : (mi_block_t*)p); mi_free_block_local(page, block, true /* track stats */, true /* check for a full page */); } // free a pointer owned by another thread (page parameter comes first for better codegen) static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept { mi_block_t* const block = _mi_page_ptr_unalign(page, p); // don't check `has_aligned` flag to avoid a race (issue #865) mi_free_block_mt(page, segment, block); } // generic free (for runtime integration) void mi_decl_noinline _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept { if (is_local) mi_free_generic_local(page,segment,p); else mi_free_generic_mt(page,segment,p); } // Get the segment data belonging to a pointer // This is just a single `and` in release mode but does further checks in debug mode // (and secure mode) to see if this was a valid pointer. static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg) { MI_UNUSED(msg); #if (MI_DEBUG>0) if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) { _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); return NULL; } #endif mi_segment_t* const segment = _mi_ptr_segment(p); if mi_unlikely(segment==NULL) return segment; #if (MI_DEBUG>0) if mi_unlikely(!mi_is_in_heap_region(p)) { _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" "(this may still be a valid very large allocation (over 64MiB))\n", msg, p); if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) { _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); } } #endif #if (MI_DEBUG>0 || MI_SECURE>=4) if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) { _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p); return NULL; } #endif return segment; } // Free a block // Fast path written carefully to prevent register spilling on the stack void mi_free(void* p) mi_attr_noexcept { mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free"); if mi_unlikely(segment==NULL) return; const bool is_local = (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id)); mi_page_t* const page = _mi_segment_page_of(segment, p); if mi_likely(is_local) { // thread-local free? if mi_likely(page->flags.full_aligned == 0) { // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned) // thread-local, aligned, and not a full page mi_block_t* const block = (mi_block_t*)p; mi_free_block_local(page, block, true /* track stats */, false /* no need to check if the page is full */); } else { // page is full or contains (inner) aligned blocks; use generic path mi_free_generic_local(page, segment, p); } } else { // not thread-local; use generic path mi_free_generic_mt(page, segment, p); } } // return true if successful bool _mi_free_delayed_block(mi_block_t* block) { // get segment and page mi_assert_internal(block!=NULL); const mi_segment_t* const segment = _mi_ptr_segment(block); mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(_mi_thread_id() == segment->thread_id); mi_page_t* const page = _mi_segment_page_of(segment, block); // Clear the no-delayed flag so delayed freeing is used again for this page. // This must be done before collecting the free lists on this page -- otherwise // some blocks may end up in the page `thread_free` list with no blocks in the // heap `thread_delayed_free` list which may cause the page to be never freed! // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`) if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) { return false; } // collect all other non-local frees (move from `thread_free` to `free`) to ensure up-to-date `used` count _mi_page_free_collect(page, false); // and free the block (possibly freeing the page as well since `used` is updated) mi_free_block_local(page, block, false /* stats have already been adjusted */, true /* check for a full page */); return true; } // ------------------------------------------------------ // Multi-threaded Free (`_mt`) // ------------------------------------------------------ // Push a block that is owned by another thread on its page-local thread free // list or it's heap delayed free list. Such blocks are later collected by // the owning thread in `_mi_free_delayed_block`. static void mi_decl_noinline mi_free_block_delayed_mt( mi_page_t* page, mi_block_t* block ) { // Try to put the block on either the page-local thread free list, // or the heap delayed free list (if this is the first non-local free in that page) mi_thread_free_t tfreex; bool use_delayed; mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); do { use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE); if mi_unlikely(use_delayed) { // unlikely: this only happens on the first concurrent free in a page that is in the full list tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING); } else { // usual: directly add to page thread_free list mi_block_set_next(page, block, mi_tf_block(tfree)); tfreex = mi_tf_set_block(tfree,block); } } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); // If this was the first non-local free, we need to push it on the heap delayed free list instead if mi_unlikely(use_delayed) { // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page); mi_assert_internal(heap != NULL); if (heap != NULL) { // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity) mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free); do { mi_block_set_nextx(heap,block,dfree, heap->keys); } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block)); } // and reset the MI_DELAYED_FREEING flag tfree = mi_atomic_load_relaxed(&page->xthread_free); do { tfreex = tfree; mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING); tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE); } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); } } // Multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON) static void mi_decl_noinline mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block) { // first see if the segment was abandoned and if we can reclaim it into our thread if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) && #if MI_HUGE_PAGE_ABANDON segment->page_kind != MI_PAGE_HUGE && #endif mi_atomic_load_relaxed(&segment->thread_id) == 0) { // the segment is abandoned, try to reclaim it into our heap if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) { mi_assert_internal(_mi_thread_id() == mi_atomic_load_relaxed(&segment->thread_id)); mi_assert_internal(mi_heap_get_default()->tld->segments.subproc == segment->subproc); mi_free(block); // recursively free as now it will be a local free in our heap return; } } // The padding check may access the non-thread-owned page for the key values. // that is safe as these are constant and the page won't be freed (as the block is not freed yet). mi_check_padding(page, block); // adjust stats (after padding check and potentially recursive `mi_free` above) mi_stat_free(page, block); // stat_free may access the padding mi_track_free_size(block, mi_page_usable_size_of(page,block)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection _mi_padding_shrink(page, block, sizeof(mi_block_t)); if (segment->page_kind == MI_PAGE_HUGE) { #if MI_HUGE_PAGE_ABANDON // huge page segments are always abandoned and can be freed immediately _mi_segment_huge_page_free(segment, page, block); return; #else // huge pages are special as they occupy the entire segment // as these are large we reset the memory occupied by the page so it is available to other threads // (as the owning thread needs to actually free the memory later). _mi_segment_huge_page_reset(segment, page, block); #endif } else { #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading memset(block, MI_DEBUG_FREED, mi_usable_size(block)); #endif } // and finally free the actual block by pushing it on the owning heap // thread_delayed free list (or heap delayed free list) mi_free_block_delayed_mt(page,block); } // ------------------------------------------------------ // Usable size // ------------------------------------------------------ // Bytes available in a block static size_t mi_decl_noinline mi_page_usable_aligned_size_of(const mi_page_t* page, const void* p) mi_attr_noexcept { const mi_block_t* block = _mi_page_ptr_unalign(page, p); const size_t size = mi_page_usable_size_of(page, block); const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block; mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); return (size - adjust); } static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept { const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg); if mi_unlikely(segment==NULL) return 0; const mi_page_t* const page = _mi_segment_page_of(segment, p); if mi_likely(!mi_page_has_aligned(page)) { const mi_block_t* block = (const mi_block_t*)p; return mi_page_usable_size_of(page, block); } else { // split out to separate routine for improved code generation return mi_page_usable_aligned_size_of(page, p); } } mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept { return _mi_usable_size(p, "mi_usable_size"); } // ------------------------------------------------------ // Free variants // ------------------------------------------------------ void mi_free_size(void* p, size_t size) mi_attr_noexcept { MI_UNUSED_RELEASE(size); mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size")); mi_free(p); } void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept { MI_UNUSED_RELEASE(alignment); mi_assert(((uintptr_t)p % alignment) == 0); mi_free_size(p,size); } void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept { MI_UNUSED_RELEASE(alignment); mi_assert(((uintptr_t)p % alignment) == 0); mi_free(p); } // ------------------------------------------------------ // Check for double free in secure and debug mode // This is somewhat expensive so only enabled for secure mode 4 // ------------------------------------------------------ #if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0)) // linear check if the free list contains a specific element static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) { while (list != NULL) { if (elem==list) return true; list = mi_block_next(page, list); } return false; } static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) { // The decoded value is in the same page (or NULL). // Walk the free lists to verify positively if it is already freed if (mi_list_contains(page, page->free, block) || mi_list_contains(page, page->local_free, block) || mi_list_contains(page, mi_page_thread_free(page), block)) { _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page)); return true; } return false; } #define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); } static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { bool is_double_free = false; mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer? (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL? { // Suspicious: decoded value a in block is in the same page (or NULL) -- maybe a double free? // (continue in separate function to improve code generation) is_double_free = mi_check_is_double_freex(page, block); } return is_double_free; } #else static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(page); MI_UNUSED(block); return false; } #endif // --------------------------------------------------------------------------- // Check for heap block overflow by setting up padding at the end of the block // --------------------------------------------------------------------------- #if MI_PADDING // && !MI_TRACK_ENABLED static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) { *bsize = mi_page_usable_block_size(page); const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize); mi_track_mem_defined(padding,sizeof(mi_padding_t)); *delta = padding->delta; uint32_t canary = padding->canary; uintptr_t keys[2]; keys[0] = page->keys[0]; keys[1] = page->keys[1]; bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize); mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); return ok; } // Return the exact usable size of a block. static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); mi_assert_internal(ok); mi_assert_internal(delta <= bsize); return (ok ? bsize - delta : 0); } // When a non-thread-local block is freed, it becomes part of the thread delayed free // list that is freed later by the owning heap. If the exact usable size is too small to // contain the pointer for the delayed list, then shrink the padding (by decreasing delta) // so it will later not trigger an overflow error in `mi_free_block`. void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); mi_assert_internal(ok); if (!ok || (bsize - delta) >= min_size) return; // usually already enough space mi_assert_internal(bsize >= min_size); if (bsize < min_size) return; // should never happen size_t new_delta = (bsize - min_size); mi_assert_internal(new_delta < bsize); mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize); mi_track_mem_defined(padding,sizeof(mi_padding_t)); padding->delta = (uint32_t)new_delta; mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); } #else static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(block); return mi_page_usable_block_size(page); } void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) { MI_UNUSED(page); MI_UNUSED(block); MI_UNUSED(min_size); } #endif #if MI_PADDING && MI_PADDING_CHECK static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) { size_t bsize; size_t delta; bool ok = mi_page_decode_padding(page, block, &delta, &bsize); *size = *wrong = bsize; if (!ok) return false; mi_assert_internal(bsize >= delta); *size = bsize - delta; if (!mi_page_is_huge(page)) { uint8_t* fill = (uint8_t*)block + bsize - delta; const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes mi_track_mem_defined(fill, maxpad); for (size_t i = 0; i < maxpad; i++) { if (fill[i] != MI_DEBUG_PADDING) { *wrong = bsize - delta + i; ok = false; break; } } mi_track_mem_noaccess(fill, maxpad); } return ok; } static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { size_t size; size_t wrong; if (!mi_verify_padding(page,block,&size,&wrong)) { _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong ); } } #else static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(page); MI_UNUSED(block); } #endif // only maintain stats for smaller objects if requested #if (MI_STAT>0) static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { #if (MI_STAT < 2) MI_UNUSED(block); #endif mi_heap_t* const heap = mi_heap_get_default(); const size_t bsize = mi_page_usable_block_size(page); #if (MI_STAT>1) const size_t usize = mi_page_usable_size_of(page, block); mi_heap_stat_decrease(heap, malloc, usize); #endif if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, normal, bsize); #if (MI_STAT > 1) mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1); #endif } else { const size_t bpsize = mi_page_block_size(page); // match stat in page.c:mi_huge_page_alloc mi_heap_stat_decrease(heap, huge, bpsize); } } #else static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) { MI_UNUSED(page); MI_UNUSED(block); } #endif