/*---------------------------------------------------------------------------- Copyright (c) 2018-2021, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" #include "mimalloc/internal.h" #include "mimalloc/atomic.h" #include "mimalloc/prim.h" // mi_prim_get_default_heap #include // memset, memcpy #if defined(_MSC_VER) && (_MSC_VER < 1920) #pragma warning(disable:4204) // non-constant aggregate initializer #endif /* ----------------------------------------------------------- Helpers ----------------------------------------------------------- */ // return `true` if ok, `false` to break typedef bool (heap_page_visitor_fun)(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2); // Visit all pages in a heap; returns `false` if break was called. static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void* arg1, void* arg2) { if (heap==NULL || heap->page_count==0) return 0; // visit all pages #if MI_DEBUG>1 size_t total = heap->page_count; size_t count = 0; #endif for (size_t i = 0; i <= MI_BIN_FULL; i++) { mi_page_queue_t* pq = &heap->pages[i]; mi_page_t* page = pq->first; while(page != NULL) { mi_page_t* next = page->next; // save next in case the page gets removed from the queue mi_assert_internal(mi_page_heap(page) == heap); #if MI_DEBUG>1 count++; #endif if (!fn(heap, pq, page, arg1, arg2)) return false; page = next; // and continue } } mi_assert_internal(count == total); return true; } #if MI_DEBUG>=2 static bool mi_heap_page_is_valid(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { MI_UNUSED(arg1); MI_UNUSED(arg2); MI_UNUSED(pq); mi_assert_internal(mi_page_heap(page) == heap); mi_segment_t* segment = _mi_page_segment(page); mi_assert_internal(segment->thread_id == heap->thread_id); mi_assert_expensive(_mi_page_is_valid(page)); return true; } #endif #if MI_DEBUG>=3 static bool mi_heap_is_valid(mi_heap_t* heap) { mi_assert_internal(heap!=NULL); mi_heap_visit_pages(heap, &mi_heap_page_is_valid, NULL, NULL); return true; } #endif /* ----------------------------------------------------------- "Collect" pages by migrating `local_free` and `thread_free` lists and freeing empty pages. This is done when a thread stops (and in that case abandons pages if there are still blocks alive) ----------------------------------------------------------- */ typedef enum mi_collect_e { MI_NORMAL, MI_FORCE, MI_ABANDON } mi_collect_t; static bool mi_heap_page_collect(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg_collect, void* arg2 ) { MI_UNUSED(arg2); MI_UNUSED(heap); mi_assert_internal(mi_heap_page_is_valid(heap, pq, page, NULL, NULL)); mi_collect_t collect = *((mi_collect_t*)arg_collect); _mi_page_free_collect(page, collect >= MI_FORCE); if (mi_page_all_free(page)) { // no more used blocks, free the page. // note: this will free retired pages as well. _mi_page_free(page, pq, collect >= MI_FORCE); } else if (collect == MI_ABANDON) { // still used blocks but the thread is done; abandon the page _mi_page_abandon(page, pq); } return true; // don't break } static bool mi_heap_page_never_delayed_free(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { MI_UNUSED(arg1); MI_UNUSED(arg2); MI_UNUSED(heap); MI_UNUSED(pq); _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false); return true; // don't break } static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect) { if (heap==NULL || !mi_heap_is_initialized(heap)) return; const bool force = (collect >= MI_FORCE); _mi_deferred_free(heap, force); // python/cpython#112532: we may be called from a thread that is not the owner of the heap const bool is_main_thread = (_mi_is_main_thread() && heap->thread_id == _mi_thread_id()); // note: never reclaim on collect but leave it to threads that need storage to reclaim if ( #ifdef NDEBUG collect == MI_FORCE #else collect >= MI_FORCE #endif && is_main_thread && mi_heap_is_backing(heap) && !heap->no_reclaim) { // the main thread is abandoned (end-of-program), try to reclaim all abandoned segments. // if all memory is freed by now, all segments should be freed. // note: this only collects in the current subprocess _mi_abandoned_reclaim_all(heap, &heap->tld->segments); } // if abandoning, mark all pages to no longer add to delayed_free if (collect == MI_ABANDON) { mi_heap_visit_pages(heap, &mi_heap_page_never_delayed_free, NULL, NULL); } // free all current thread delayed blocks. // (if abandoning, after this there are no more thread-delayed references into the pages.) _mi_heap_delayed_free_all(heap); // collect retired pages _mi_heap_collect_retired(heap, force); // collect all pages owned by this thread mi_heap_visit_pages(heap, &mi_heap_page_collect, &collect, NULL); mi_assert_internal( collect != MI_ABANDON || mi_atomic_load_ptr_acquire(mi_block_t,&heap->thread_delayed_free) == NULL ); // collect segments (purge pages, this can be expensive so don't force on abandonment) _mi_segments_collect(collect == MI_FORCE, &heap->tld->segments); // if forced, collect thread data cache on program-exit (or shared library unload) if (force && is_main_thread && mi_heap_is_backing(heap)) { _mi_thread_data_collect(); // collect thread data cache } // collect arenas (this is program wide so don't force purges on abandonment of threads) _mi_arenas_collect(collect == MI_FORCE /* force purge? */, &heap->tld->stats); } void _mi_heap_collect_abandon(mi_heap_t* heap) { mi_heap_collect_ex(heap, MI_ABANDON); } void mi_heap_collect(mi_heap_t* heap, bool force) mi_attr_noexcept { mi_heap_collect_ex(heap, (force ? MI_FORCE : MI_NORMAL)); } void mi_collect(bool force) mi_attr_noexcept { mi_heap_collect(mi_prim_get_default_heap(), force); } /* ----------------------------------------------------------- Heap new ----------------------------------------------------------- */ mi_heap_t* mi_heap_get_default(void) { mi_thread_init(); return mi_prim_get_default_heap(); } static bool mi_heap_is_default(const mi_heap_t* heap) { return (heap == mi_prim_get_default_heap()); } mi_heap_t* mi_heap_get_backing(void) { mi_heap_t* heap = mi_heap_get_default(); mi_assert_internal(heap!=NULL); mi_heap_t* bheap = heap->tld->heap_backing; mi_assert_internal(bheap!=NULL); mi_assert_internal(bheap->thread_id == _mi_thread_id()); return bheap; } void _mi_heap_init(mi_heap_t* heap, mi_tld_t* tld, mi_arena_id_t arena_id, bool noreclaim, uint8_t tag) { _mi_memcpy_aligned(heap, &_mi_heap_empty, sizeof(mi_heap_t)); heap->tld = tld; heap->thread_id = _mi_thread_id(); heap->arena_id = arena_id; heap->no_reclaim = noreclaim; heap->tag = tag; if (heap == tld->heap_backing) { _mi_random_init(&heap->random); } else { _mi_random_split(&tld->heap_backing->random, &heap->random); } heap->cookie = _mi_heap_random_next(heap) | 1; heap->keys[0] = _mi_heap_random_next(heap); heap->keys[1] = _mi_heap_random_next(heap); // push on the thread local heaps list heap->next = heap->tld->heaps; heap->tld->heaps = heap; } mi_decl_nodiscard mi_heap_t* mi_heap_new_ex(int heap_tag, bool allow_destroy, mi_arena_id_t arena_id) { mi_heap_t* bheap = mi_heap_get_backing(); mi_heap_t* heap = mi_heap_malloc_tp(bheap, mi_heap_t); // todo: OS allocate in secure mode? if (heap == NULL) return NULL; mi_assert(heap_tag >= 0 && heap_tag < 256); _mi_heap_init(heap, bheap->tld, arena_id, allow_destroy /* no reclaim? */, (uint8_t)heap_tag /* heap tag */); return heap; } mi_decl_nodiscard mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t arena_id) { return mi_heap_new_ex(0 /* default heap tag */, false /* don't allow `mi_heap_destroy` */, arena_id); } mi_decl_nodiscard mi_heap_t* mi_heap_new(void) { // don't reclaim abandoned memory or otherwise destroy is unsafe return mi_heap_new_ex(0 /* default heap tag */, true /* no reclaim */, _mi_arena_id_none()); } bool _mi_heap_memid_is_suitable(mi_heap_t* heap, mi_memid_t memid) { return _mi_arena_memid_is_suitable(memid, heap->arena_id); } uintptr_t _mi_heap_random_next(mi_heap_t* heap) { return _mi_random_next(&heap->random); } // zero out the page queues static void mi_heap_reset_pages(mi_heap_t* heap) { mi_assert_internal(heap != NULL); mi_assert_internal(mi_heap_is_initialized(heap)); // TODO: copy full empty heap instead? memset(&heap->pages_free_direct, 0, sizeof(heap->pages_free_direct)); _mi_memcpy_aligned(&heap->pages, &_mi_heap_empty.pages, sizeof(heap->pages)); heap->thread_delayed_free = NULL; heap->page_count = 0; } // called from `mi_heap_destroy` and `mi_heap_delete` to free the internal heap resources. static void mi_heap_free(mi_heap_t* heap) { mi_assert(heap != NULL); mi_assert_internal(mi_heap_is_initialized(heap)); if (heap==NULL || !mi_heap_is_initialized(heap)) return; if (mi_heap_is_backing(heap)) return; // dont free the backing heap // reset default if (mi_heap_is_default(heap)) { _mi_heap_set_default_direct(heap->tld->heap_backing); } // remove ourselves from the thread local heaps list // linear search but we expect the number of heaps to be relatively small mi_heap_t* prev = NULL; mi_heap_t* curr = heap->tld->heaps; while (curr != heap && curr != NULL) { prev = curr; curr = curr->next; } mi_assert_internal(curr == heap); if (curr == heap) { if (prev != NULL) { prev->next = heap->next; } else { heap->tld->heaps = heap->next; } } mi_assert_internal(heap->tld->heaps != NULL); // and free the used memory mi_free(heap); } // return a heap on the same thread as `heap` specialized for the specified tag (if it exists) mi_heap_t* _mi_heap_by_tag(mi_heap_t* heap, uint8_t tag) { if (heap->tag == tag) { return heap; } for (mi_heap_t *curr = heap->tld->heaps; curr != NULL; curr = curr->next) { if (curr->tag == tag) { return curr; } } return NULL; } /* ----------------------------------------------------------- Heap destroy ----------------------------------------------------------- */ static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* arg1, void* arg2) { MI_UNUSED(arg1); MI_UNUSED(arg2); MI_UNUSED(heap); MI_UNUSED(pq); // ensure no more thread_delayed_free will be added _mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false); // stats const size_t bsize = mi_page_block_size(page); if (bsize > MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, huge, bsize); } #if (MI_STAT) _mi_page_free_collect(page, false); // update used count const size_t inuse = page->used; if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { mi_heap_stat_decrease(heap, normal, bsize * inuse); #if (MI_STAT>1) mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], inuse); #endif } mi_heap_stat_decrease(heap, malloc, bsize * inuse); // todo: off for aligned blocks... #endif /// pretend it is all free now mi_assert_internal(mi_page_thread_free(page) == NULL); page->used = 0; // and free the page // mi_page_free(page,false); page->next = NULL; page->prev = NULL; _mi_segment_page_free(page,false /* no force? */, &heap->tld->segments); return true; // keep going } void _mi_heap_destroy_pages(mi_heap_t* heap) { mi_heap_visit_pages(heap, &_mi_heap_page_destroy, NULL, NULL); mi_heap_reset_pages(heap); } #if MI_TRACK_HEAP_DESTROY static bool mi_cdecl mi_heap_track_block_free(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) { MI_UNUSED(heap); MI_UNUSED(area); MI_UNUSED(arg); MI_UNUSED(block_size); mi_track_free_size(block,mi_usable_size(block)); return true; } #endif void mi_heap_destroy(mi_heap_t* heap) { mi_assert(heap != NULL); mi_assert(mi_heap_is_initialized(heap)); mi_assert(heap->no_reclaim); mi_assert_expensive(mi_heap_is_valid(heap)); if (heap==NULL || !mi_heap_is_initialized(heap)) return; if (!heap->no_reclaim) { // don't free in case it may contain reclaimed pages mi_heap_delete(heap); } else { // track all blocks as freed #if MI_TRACK_HEAP_DESTROY mi_heap_visit_blocks(heap, true, mi_heap_track_block_free, NULL); #endif // free all pages _mi_heap_destroy_pages(heap); mi_heap_free(heap); } } // forcefully destroy all heaps in the current thread void _mi_heap_unsafe_destroy_all(void) { mi_heap_t* bheap = mi_heap_get_backing(); mi_heap_t* curr = bheap->tld->heaps; while (curr != NULL) { mi_heap_t* next = curr->next; if (curr->no_reclaim) { mi_heap_destroy(curr); } else { _mi_heap_destroy_pages(curr); } curr = next; } } /* ----------------------------------------------------------- Safe Heap delete ----------------------------------------------------------- */ // Transfer the pages from one heap to the other static void mi_heap_absorb(mi_heap_t* heap, mi_heap_t* from) { mi_assert_internal(heap!=NULL); if (from==NULL || from->page_count == 0) return; // reduce the size of the delayed frees _mi_heap_delayed_free_partial(from); // transfer all pages by appending the queues; this will set a new heap field // so threads may do delayed frees in either heap for a while. // note: appending waits for each page to not be in the `MI_DELAYED_FREEING` state // so after this only the new heap will get delayed frees for (size_t i = 0; i <= MI_BIN_FULL; i++) { mi_page_queue_t* pq = &heap->pages[i]; mi_page_queue_t* append = &from->pages[i]; size_t pcount = _mi_page_queue_append(heap, pq, append); heap->page_count += pcount; from->page_count -= pcount; } mi_assert_internal(from->page_count == 0); // and do outstanding delayed frees in the `from` heap // note: be careful here as the `heap` field in all those pages no longer point to `from`, // turns out to be ok as `_mi_heap_delayed_free` only visits the list and calls a // the regular `_mi_free_delayed_block` which is safe. _mi_heap_delayed_free_all(from); #if !defined(_MSC_VER) || (_MSC_VER > 1900) // somehow the following line gives an error in VS2015, issue #353 mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_block_t,&from->thread_delayed_free) == NULL); #endif // and reset the `from` heap mi_heap_reset_pages(from); } // Safe delete a heap without freeing any still allocated blocks in that heap. void mi_heap_delete(mi_heap_t* heap) { mi_assert(heap != NULL); mi_assert(mi_heap_is_initialized(heap)); mi_assert_expensive(mi_heap_is_valid(heap)); if (heap==NULL || !mi_heap_is_initialized(heap)) return; if (!mi_heap_is_backing(heap)) { // transfer still used pages to the backing heap mi_heap_absorb(heap->tld->heap_backing, heap); } else { // the backing heap abandons its pages _mi_heap_collect_abandon(heap); } mi_assert_internal(heap->page_count==0); mi_heap_free(heap); } mi_heap_t* mi_heap_set_default(mi_heap_t* heap) { mi_assert(heap != NULL); mi_assert(mi_heap_is_initialized(heap)); if (heap==NULL || !mi_heap_is_initialized(heap)) return NULL; mi_assert_expensive(mi_heap_is_valid(heap)); mi_heap_t* old = mi_prim_get_default_heap(); _mi_heap_set_default_direct(heap); return old; } /* ----------------------------------------------------------- Analysis ----------------------------------------------------------- */ // static since it is not thread safe to access heaps from other threads. static mi_heap_t* mi_heap_of_block(const void* p) { if (p == NULL) return NULL; mi_segment_t* segment = _mi_ptr_segment(p); bool valid = (_mi_ptr_cookie(segment) == segment->cookie); mi_assert_internal(valid); if mi_unlikely(!valid) return NULL; return mi_page_heap(_mi_segment_page_of(segment,p)); } bool mi_heap_contains_block(mi_heap_t* heap, const void* p) { mi_assert(heap != NULL); if (heap==NULL || !mi_heap_is_initialized(heap)) return false; return (heap == mi_heap_of_block(p)); } static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* p, void* vfound) { MI_UNUSED(heap); MI_UNUSED(pq); bool* found = (bool*)vfound; void* start = mi_page_start(page); void* end = (uint8_t*)start + (page->capacity * mi_page_block_size(page)); *found = (p >= start && p < end); return (!*found); // continue if not found } bool mi_heap_check_owned(mi_heap_t* heap, const void* p) { mi_assert(heap != NULL); if (heap==NULL || !mi_heap_is_initialized(heap)) return false; if (((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) return false; // only aligned pointers bool found = false; mi_heap_visit_pages(heap, &mi_heap_page_check_owned, (void*)p, &found); return found; } bool mi_check_owned(const void* p) { return mi_heap_check_owned(mi_prim_get_default_heap(), p); } /* ----------------------------------------------------------- Visit all heap blocks and areas Todo: enable visiting abandoned pages, and enable visiting all blocks of all heaps across threads ----------------------------------------------------------- */ void _mi_heap_area_init(mi_heap_area_t* area, mi_page_t* page) { const size_t bsize = mi_page_block_size(page); const size_t ubsize = mi_page_usable_block_size(page); area->reserved = page->reserved * bsize; area->committed = page->capacity * bsize; area->blocks = mi_page_start(page); area->used = page->used; // number of blocks in use (#553) area->block_size = ubsize; area->full_block_size = bsize; } static void mi_get_fast_divisor(size_t divisor, uint64_t* magic, size_t* shift) { mi_assert_internal(divisor > 0 && divisor <= UINT32_MAX); *shift = 64 - mi_clz(divisor - 1); *magic = ((((uint64_t)1 << 32) * (((uint64_t)1 << *shift) - divisor)) / divisor + 1); } static size_t mi_fast_divide(size_t n, uint64_t magic, size_t shift) { mi_assert_internal(n <= UINT32_MAX); return ((((uint64_t)n * magic) >> 32) + n) >> shift; } bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t* page, mi_block_visit_fun* visitor, void* arg) { mi_assert(area != NULL); if (area==NULL) return true; mi_assert(page != NULL); if (page == NULL) return true; _mi_page_free_collect(page,true); // collect both thread_delayed and local_free mi_assert_internal(page->local_free == NULL); if (page->used == 0) return true; size_t psize; uint8_t* const pstart = _mi_segment_page_start(_mi_page_segment(page), page, &psize); mi_heap_t* const heap = mi_page_heap(page); const size_t bsize = mi_page_block_size(page); const size_t ubsize = mi_page_usable_block_size(page); // without padding // optimize page with one block if (page->capacity == 1) { mi_assert_internal(page->used == 1 && page->free == NULL); return visitor(mi_page_heap(page), area, pstart, ubsize, arg); } mi_assert(bsize <= UINT32_MAX); // optimize full pages if (page->used == page->capacity) { uint8_t* block = pstart; for (size_t i = 0; i < page->capacity; i++) { if (!visitor(heap, area, block, ubsize, arg)) return false; block += bsize; } return true; } // create a bitmap of free blocks. #define MI_MAX_BLOCKS (MI_SMALL_PAGE_SIZE / sizeof(void*)) uintptr_t free_map[MI_MAX_BLOCKS / MI_INTPTR_BITS]; const uintptr_t bmapsize = _mi_divide_up(page->capacity, MI_INTPTR_BITS); memset(free_map, 0, bmapsize * sizeof(intptr_t)); if (page->capacity % MI_INTPTR_BITS != 0) { // mark left-over bits at the end as free size_t shift = (page->capacity % MI_INTPTR_BITS); uintptr_t mask = (UINTPTR_MAX << shift); free_map[bmapsize - 1] = mask; } // fast repeated division by the block size uint64_t magic; size_t shift; mi_get_fast_divisor(bsize, &magic, &shift); #if MI_DEBUG>1 size_t free_count = 0; #endif for (mi_block_t* block = page->free; block != NULL; block = mi_block_next(page, block)) { #if MI_DEBUG>1 free_count++; #endif mi_assert_internal((uint8_t*)block >= pstart && (uint8_t*)block < (pstart + psize)); size_t offset = (uint8_t*)block - pstart; mi_assert_internal(offset % bsize == 0); mi_assert_internal(offset <= UINT32_MAX); size_t blockidx = mi_fast_divide(offset, magic, shift); mi_assert_internal(blockidx == offset / bsize); mi_assert_internal(blockidx < MI_MAX_BLOCKS); size_t bitidx = (blockidx / MI_INTPTR_BITS); size_t bit = blockidx - (bitidx * MI_INTPTR_BITS); free_map[bitidx] |= ((uintptr_t)1 << bit); } mi_assert_internal(page->capacity == (free_count + page->used)); // walk through all blocks skipping the free ones #if MI_DEBUG>1 size_t used_count = 0; #endif uint8_t* block = pstart; for (size_t i = 0; i < bmapsize; i++) { if (free_map[i] == 0) { // every block is in use for (size_t j = 0; j < MI_INTPTR_BITS; j++) { #if MI_DEBUG>1 used_count++; #endif if (!visitor(heap, area, block, ubsize, arg)) return false; block += bsize; } } else { // visit the used blocks in the mask uintptr_t m = ~free_map[i]; while (m != 0) { #if MI_DEBUG>1 used_count++; #endif size_t bitidx = mi_ctz(m); if (!visitor(heap, area, block + (bitidx * bsize), ubsize, arg)) return false; m &= m - 1; // clear least significant bit } block += bsize * MI_INTPTR_BITS; } } mi_assert_internal(page->used == used_count); return true; } // Separate struct to keep `mi_page_t` out of the public interface typedef struct mi_heap_area_ex_s { mi_heap_area_t area; mi_page_t* page; } mi_heap_area_ex_t; typedef bool (mi_heap_area_visit_fun)(const mi_heap_t* heap, const mi_heap_area_ex_t* area, void* arg); static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_t* page, void* vfun, void* arg) { MI_UNUSED(heap); MI_UNUSED(pq); mi_heap_area_visit_fun* fun = (mi_heap_area_visit_fun*)vfun; mi_heap_area_ex_t xarea; xarea.page = page; _mi_heap_area_init(&xarea.area, page); return fun(heap, &xarea, arg); } // Visit all heap pages as areas static bool mi_heap_visit_areas(const mi_heap_t* heap, mi_heap_area_visit_fun* visitor, void* arg) { if (visitor == NULL) return false; return mi_heap_visit_pages((mi_heap_t*)heap, &mi_heap_visit_areas_page, (void*)(visitor), arg); // note: function pointer to void* :-{ } // Just to pass arguments typedef struct mi_visit_blocks_args_s { bool visit_blocks; mi_block_visit_fun* visitor; void* arg; } mi_visit_blocks_args_t; static bool mi_heap_area_visitor(const mi_heap_t* heap, const mi_heap_area_ex_t* xarea, void* arg) { mi_visit_blocks_args_t* args = (mi_visit_blocks_args_t*)arg; if (!args->visitor(heap, &xarea->area, NULL, xarea->area.block_size, args->arg)) return false; if (args->visit_blocks) { return _mi_heap_area_visit_blocks(&xarea->area, xarea->page, args->visitor, args->arg); } else { return true; } } // Visit all blocks in a heap bool mi_heap_visit_blocks(const mi_heap_t* heap, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) { mi_visit_blocks_args_t args = { visit_blocks, visitor, arg }; return mi_heap_visit_areas(heap, &mi_heap_area_visitor, &args); }