/* ---------------------------------------------------------------------------- Copyright (c) 2018, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #include "mimalloc.h" #include "mimalloc-internal.h" #include // memset // ------------------------------------------------------ // Aligned Allocation // ------------------------------------------------------ static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset, bool zero) mi_attr_noexcept { // note: we don't require `size > offset`, we just guarantee that // the address at offset is aligned regardless of the allocated size. mi_assert(alignment > 0 && alignment % sizeof(uintptr_t) == 0); if (alignment <= sizeof(uintptr_t)) return _mi_heap_malloc_zero(heap,size,zero); if (size >= (SIZE_MAX - alignment)) return NULL; // overflow // try if there is a current small block with just the right alignment if (size <= MI_SMALL_SIZE_MAX) { mi_page_t* page = _mi_heap_get_free_small_page(heap,size); if (page->free != NULL && (((uintptr_t)page->free + offset) % alignment) == 0) { #if MI_STAT>1 mi_heap_stat_increase( heap, malloc, size); #endif void* p = _mi_page_malloc(heap,page,size); mi_assert_internal(p != NULL); mi_assert_internal(((uintptr_t)p + offset) % alignment == 0); if (zero) memset(p,0,size); return p; } } // otherwise over-allocate void* p = _mi_heap_malloc_zero(heap, size + alignment - 1, zero); if (p == NULL) return NULL; // .. and align within the allocation _mi_ptr_page(p)->flags.has_aligned = true; uintptr_t adjust = alignment - (((uintptr_t)p + offset) % alignment); mi_assert_internal(adjust % sizeof(uintptr_t) == 0); void* aligned_p = (adjust == alignment ? p : (void*)((uintptr_t)p + adjust)); mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0); mi_assert_internal( p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p),_mi_ptr_page(aligned_p),aligned_p) ); return aligned_p; } static void* mi_malloc_zero_aligned_at(size_t size, size_t alignment, size_t offset, bool zero) mi_attr_noexcept { return mi_heap_malloc_zero_aligned_at(mi_get_default_heap(),size,alignment,offset,zero); } void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_malloc_zero_aligned_at(size, alignment, offset, false); } void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { return mi_malloc_aligned_at(size, alignment, 0); } void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept { return mi_malloc_zero_aligned_at(size,alignment,offset,true); } void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept { return mi_zalloc_aligned_at(size,alignment,0); } void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { size_t total; if (mi_mul_overflow(count,size,&total)) return NULL; return mi_zalloc_aligned_at(total,alignment,offset); } void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept { size_t total; if (mi_mul_overflow(count,size,&total)) return NULL; return mi_zalloc_aligned(total,alignment); } static void* mi_realloc_zero_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset, bool zero) mi_attr_noexcept { mi_assert(alignment > 0); if (alignment <= sizeof(uintptr_t)) return _mi_realloc_zero(p,newsize,zero); if (p == NULL) return mi_malloc_zero_aligned_at(newsize,alignment,offset,zero); size_t size = mi_usable_size(p); if (newsize <= size && newsize >= (size - (size / 2)) && (((uintptr_t)p + offset) % alignment) == 0) { return p; // reallocation still fits, is aligned and not more than 50% waste } else { void* newp = mi_malloc_aligned_at(newsize,alignment,offset); if (newp != NULL) { if (zero && newsize > size) { // also set last word in the previous allocation to zero to ensure any padding is zero-initialized size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); memset((uint8_t*)newp + start, 0, newsize - start); } memcpy(newp, p, (newsize > size ? size : newsize)); mi_free(p); // only free if successful } return newp; } } static void* _mi_realloc_aligned(void* p, size_t newsize, size_t alignment, bool zero) mi_attr_noexcept { mi_assert(alignment > 0); if (alignment <= sizeof(uintptr_t)) return _mi_realloc_zero(p,newsize,zero); size_t offset = ((uintptr_t)p % alignment); // use offset of previous allocation (p can be NULL) return mi_realloc_zero_aligned_at(p,newsize,alignment,offset,zero); } void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_realloc_zero_aligned_at(p,newsize,alignment,offset,false); } void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return _mi_realloc_aligned(p,newsize,alignment,false); } void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept { return mi_realloc_zero_aligned_at(p,newsize,alignment,offset,true); } void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept { return _mi_realloc_aligned(p,newsize,alignment,true); } void* mi_recalloc_aligned_at(void* p, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept { size_t total; if (mi_mul_overflow(count,size,&total)) return NULL; return mi_rezalloc_aligned_at(p,total,alignment,offset); } void* mi_recalloc_aligned(void* p, size_t count, size_t size, size_t alignment) mi_attr_noexcept { size_t total; if (mi_mul_overflow(count,size,&total)) return NULL; return mi_rezalloc_aligned(p,total,alignment); }