Merge branch 'dev' into dev-steal

This commit is contained in:
daanx 2024-11-18 11:05:31 -08:00
commit edc7ddd37c
36 changed files with 1046 additions and 436 deletions

View file

@ -26,13 +26,15 @@ option(MI_BUILD_OBJECT "Build object library" ON)
option(MI_BUILD_TESTS "Build test executables" ON) option(MI_BUILD_TESTS "Build test executables" ON)
option(MI_DEBUG_TSAN "Build with thread sanitizer (needs clang)" OFF) option(MI_DEBUG_TSAN "Build with thread sanitizer (needs clang)" OFF)
option(MI_DEBUG_UBSAN "Build with undefined-behavior sanitizer (needs clang++)" OFF) option(MI_DEBUG_UBSAN "Build with undefined-behavior sanitizer (needs clang++)" OFF)
option(MI_DEBUG_GUARDED "Build with guard pages behind certain object allocations (implies MI_NO_PADDING=ON)" OFF) option(MI_GUARDED "Build with guard pages behind certain object allocations (implies MI_NO_PADDING=ON)" OFF)
option(MI_SKIP_COLLECT_ON_EXIT "Skip collecting memory on program exit" OFF) option(MI_SKIP_COLLECT_ON_EXIT "Skip collecting memory on program exit" OFF)
option(MI_NO_PADDING "Force no use of padding even in DEBUG mode etc." OFF) option(MI_NO_PADDING "Force no use of padding even in DEBUG mode etc." OFF)
option(MI_INSTALL_TOPLEVEL "Install directly into $CMAKE_INSTALL_PREFIX instead of PREFIX/lib/mimalloc-version" OFF) option(MI_INSTALL_TOPLEVEL "Install directly into $CMAKE_INSTALL_PREFIX instead of PREFIX/lib/mimalloc-version" OFF)
option(MI_NO_THP "Disable transparent huge pages support on Linux/Android for the mimalloc process only" OFF) option(MI_NO_THP "Disable transparent huge pages support on Linux/Android for the mimalloc process only" OFF)
option(MI_EXTRA_CPPDEFS "Extra pre-processor definitions (use as `-DMI_EXTRA_CPPDEFS=\"opt1=val1;opt2=val2\"`)" "")
# deprecated options # deprecated options
option(MI_WIN_USE_FLS "Use Fiber local storage on Windows to detect thread termination" OFF)
option(MI_CHECK_FULL "Use full internal invariant checking in DEBUG mode (deprecated, use MI_DEBUG_FULL instead)" OFF) option(MI_CHECK_FULL "Use full internal invariant checking in DEBUG mode (deprecated, use MI_DEBUG_FULL instead)" OFF)
option(MI_USE_LIBATOMIC "Explicitly link with -latomic (on older systems) (deprecated and detected automatically)" OFF) option(MI_USE_LIBATOMIC "Explicitly link with -latomic (on older systems) (deprecated and detected automatically)" OFF)
@ -62,9 +64,14 @@ set(mi_sources
set(mi_cflags "") set(mi_cflags "")
set(mi_cflags_static "") # extra flags for a static library build set(mi_cflags_static "") # extra flags for a static library build
set(mi_cflags_dynamic "") # extra flags for a shared-object library build set(mi_cflags_dynamic "") # extra flags for a shared-object library build
set(mi_defines "")
set(mi_libraries "") set(mi_libraries "")
if(MI_EXTRA_CPPDEFS)
set(mi_defines ${MI_EXTRA_CPPDEFS})
else()
set(mi_defines "")
endif()
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
# Convenience: set default build type depending on the build directory # Convenience: set default build type depending on the build directory
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
@ -200,9 +207,9 @@ if(MI_TRACK_ETW)
endif() endif()
endif() endif()
if(MI_DEBUG_GUARDED) if(MI_GUARDED)
message(STATUS "Compile guard pages behind certain object allocations (MI_DEBUG_GUARDED=ON)") message(STATUS "Compile guard pages behind certain object allocations (MI_GUARDED=ON)")
list(APPEND mi_defines MI_DEBUG_GUARDED=1) list(APPEND mi_defines MI_GUARDED=1)
if(NOT MI_NO_PADDING) if(NOT MI_NO_PADDING)
message(STATUS " Disabling padding due to guard pages (MI_NO_PADDING=ON)") message(STATUS " Disabling padding due to guard pages (MI_NO_PADDING=ON)")
set(MI_NO_PADDING ON) set(MI_NO_PADDING ON)
@ -307,6 +314,22 @@ if(MI_LIBC_MUSL)
list(APPEND mi_defines MI_LIBC_MUSL=1) list(APPEND mi_defines MI_LIBC_MUSL=1)
endif() endif()
if(MI_WIN_USE_FLS)
message(STATUS "Use the Fiber API to detect thread termination")
list(APPEND mi_defines MI_WIN_USE_FLS=1)
endif()
# Check /proc/cpuinfo for an SV39 MMU and limit the virtual address bits.
# (this will skip the aligned hinting in that case. Issue #939, #949)
if (EXISTS /proc/cpuinfo)
file(STRINGS /proc/cpuinfo mi_sv39_mmu REGEX "^mmu[ \t]+:[ \t]+sv39$")
if (mi_sv39_mmu)
MESSAGE( STATUS "Set virtual address bits to 39 (SV39 MMU detected)" )
list(APPEND mi_defines MI_DEFAULT_VIRTUAL_ADDRESS_BITS=39)
endif()
endif()
# On Haiku use `-DCMAKE_INSTALL_PREFIX` instead, issue #788 # On Haiku use `-DCMAKE_INSTALL_PREFIX` instead, issue #788
# if(CMAKE_SYSTEM_NAME MATCHES "Haiku") # if(CMAKE_SYSTEM_NAME MATCHES "Haiku")
# SET(CMAKE_INSTALL_LIBDIR ~/config/non-packaged/lib) # SET(CMAKE_INSTALL_LIBDIR ~/config/non-packaged/lib)

View file

@ -15,7 +15,7 @@ trigger:
jobs: jobs:
- job: - job:
displayName: Windows displayName: Windows 2022
pool: pool:
vmImage: vmImage:
windows-2022 windows-2022
@ -52,7 +52,7 @@ jobs:
# artifact: mimalloc-windows-$(BuildType) # artifact: mimalloc-windows-$(BuildType)
- job: - job:
displayName: Linux displayName: Ubuntu 22.04
pool: pool:
vmImage: vmImage:
ubuntu-22.04 ubuntu-22.04
@ -117,8 +117,8 @@ jobs:
CC: clang CC: clang
CXX: clang CXX: clang
BuildType: debug-guarded-clang BuildType: debug-guarded-clang
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=RelWithDebInfo -DMI_DEBUG_FULL=ON -DMI_DEBUG_GUARDED=ON cmakeExtraArgs: -DCMAKE_BUILD_TYPE=RelWithDebInfo -DMI_DEBUG_FULL=ON -DMI_GUARDED=ON
steps: steps:
- task: CMake@1 - task: CMake@1
inputs: inputs:
@ -129,16 +129,16 @@ jobs:
- script: ctest --verbose --timeout 180 - script: ctest --verbose --timeout 180
workingDirectory: $(BuildType) workingDirectory: $(BuildType)
displayName: CTest displayName: CTest
env: env:
MIMALLOC_DEBUG_GUARDED_MAX: 1024 MIMALLOC_GUARDED_SAMPLE_RATE: 1000
# - upload: $(Build.SourcesDirectory)/$(BuildType) # - upload: $(Build.SourcesDirectory)/$(BuildType)
# artifact: mimalloc-ubuntu-$(BuildType) # artifact: mimalloc-ubuntu-$(BuildType)
- job: - job:
displayName: macOS displayName: macOS 14 (Sonoma)
pool: pool:
vmImage: vmImage:
macOS-latest macOS-14
strategy: strategy:
matrix: matrix:
Debug: Debug:
@ -163,35 +163,145 @@ jobs:
# - upload: $(Build.SourcesDirectory)/$(BuildType) # - upload: $(Build.SourcesDirectory)/$(BuildType)
# artifact: mimalloc-macos-$(BuildType) # artifact: mimalloc-macos-$(BuildType)
# - job: # ----------------------------------------------------------
# displayName: Windows-2017 # Other OS versions (just debug mode)
# pool: # ----------------------------------------------------------
# vmImage:
# vs2017-win2016 - job:
# strategy: displayName: Windows 2019
# matrix: pool:
# Debug: vmImage:
# BuildType: debug windows-2019
# cmakeExtraArgs: -A x64 -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON strategy:
# MSBuildConfiguration: Debug matrix:
# Release: Debug:
# BuildType: release BuildType: debug
# cmakeExtraArgs: -A x64 -DCMAKE_BUILD_TYPE=Release cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON
# MSBuildConfiguration: Release MSBuildConfiguration: Debug
# Secure: Release:
# BuildType: secure BuildType: release
# cmakeExtraArgs: -A x64 -DCMAKE_BUILD_TYPE=Release -DMI_SECURE=ON cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Release
# MSBuildConfiguration: Release MSBuildConfiguration: Release
# steps: steps:
# - task: CMake@1 - task: CMake@1
# inputs: inputs:
# workingDirectory: $(BuildType) workingDirectory: $(BuildType)
# cmakeArgs: .. $(cmakeExtraArgs) cmakeArgs: .. $(cmakeExtraArgs)
# - task: MSBuild@1 - task: MSBuild@1
# inputs: inputs:
# solution: $(BuildType)/libmimalloc.sln solution: $(BuildType)/libmimalloc.sln
# configuration: '$(MSBuildConfiguration)' configuration: '$(MSBuildConfiguration)'
# - script: | msbuildArguments: -m
# cd $(BuildType) - script: ctest --verbose --timeout 180 -C $(MSBuildConfiguration)
# ctest --verbose --timeout 180 workingDirectory: $(BuildType)
# displayName: CTest displayName: CTest
- job:
displayName: Ubuntu 24.04
pool:
vmImage:
ubuntu-24.04
strategy:
matrix:
Debug:
CC: gcc
CXX: g++
BuildType: debug
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON
Debug++:
CC: gcc
CXX: g++
BuildType: debug-cxx
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON -DMI_USE_CXX=ON
Debug Clang:
CC: clang
CXX: clang++
BuildType: debug-clang
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON
Debug++ Clang:
CC: clang
CXX: clang++
BuildType: debug-clang-cxx
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON -DMI_USE_CXX=ON
Release Clang:
CC: clang
CXX: clang++
BuildType: release-clang
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Release
steps:
- task: CMake@1
inputs:
workingDirectory: $(BuildType)
cmakeArgs: .. $(cmakeExtraArgs)
- script: make -j$(nproc) -C $(BuildType)
displayName: Make
- script: ctest --verbose --timeout 180
workingDirectory: $(BuildType)
displayName: CTest
- job:
displayName: Ubuntu 20.04
pool:
vmImage:
ubuntu-20.04
strategy:
matrix:
Debug:
CC: gcc
CXX: g++
BuildType: debug
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON
Debug++:
CC: gcc
CXX: g++
BuildType: debug-cxx
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON -DMI_USE_CXX=ON
Debug Clang:
CC: clang
CXX: clang++
BuildType: debug-clang
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON
Debug++ Clang:
CC: clang
CXX: clang++
BuildType: debug-clang-cxx
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON -DMI_USE_CXX=ON
Release Clang:
CC: clang
CXX: clang++
BuildType: release-clang
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Release
steps:
- task: CMake@1
inputs:
workingDirectory: $(BuildType)
cmakeArgs: .. $(cmakeExtraArgs)
- script: make -j$(nproc) -C $(BuildType)
displayName: Make
- script: ctest --verbose --timeout 180
workingDirectory: $(BuildType)
displayName: CTest
- job:
displayName: macOS 15 (Sequia)
pool:
vmImage:
macOS-15
strategy:
matrix:
Debug:
BuildType: debug
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Debug -DMI_DEBUG_FULL=ON
Release:
BuildType: release
cmakeExtraArgs: -DCMAKE_BUILD_TYPE=Release
steps:
- task: CMake@1
inputs:
workingDirectory: $(BuildType)
cmakeArgs: .. $(cmakeExtraArgs)
- script: make -j$(sysctl -n hw.ncpu) -C $(BuildType)
displayName: Make
- script: ctest --verbose --timeout 180
workingDirectory: $(BuildType)
displayName: CTest

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View file

@ -116,7 +116,7 @@
<SDLCheck>true</SDLCheck> <SDLCheck>true</SDLCheck>
<ConformanceMode>Default</ConformanceMode> <ConformanceMode>Default</ConformanceMode>
<AdditionalIncludeDirectories>../../include</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>../../include</AdditionalIncludeDirectories>
<PreprocessorDefinitions>MI_DEBUG=4;%(PreprocessorDefinitions);</PreprocessorDefinitions> <PreprocessorDefinitions>MI_DEBUG=4;MI_GUARDED=1;%(PreprocessorDefinitions);</PreprocessorDefinitions>
<CompileAs>CompileAsCpp</CompileAs> <CompileAs>CompileAsCpp</CompileAs>
<SupportJustMyCode>false</SupportJustMyCode> <SupportJustMyCode>false</SupportJustMyCode>
<LanguageStandard>stdcpp20</LanguageStandard> <LanguageStandard>stdcpp20</LanguageStandard>

View file

@ -290,7 +290,7 @@ mi_decl_nodiscard mi_decl_export mi_heap_t* mi_heap_new_in_arena(mi_arena_id_t a
#endif #endif
// Experimental: allow sub-processes whose memory segments stay separated (and no reclamation between them) // Experimental: allow sub-processes whose memory segments stay separated (and no reclamation between them)
// Used for example for separate interpreter's in one process. // Used for example for separate interpreter's in one process.
typedef void* mi_subproc_id_t; typedef void* mi_subproc_id_t;
mi_decl_export mi_subproc_id_t mi_subproc_main(void); mi_decl_export mi_subproc_id_t mi_subproc_main(void);
@ -309,6 +309,12 @@ mi_decl_nodiscard mi_decl_export mi_heap_t* mi_heap_new_ex(int heap_tag, bool al
// deprecated // deprecated
mi_decl_export int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept; mi_decl_export int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept;
// Experimental: objects followed by a guard page.
// A sample rate of 0 disables guarded objects, while 1 uses a guard page for every object.
// A seed of 0 uses a random start point. Only objects within the size bound are eligable for guard pages.
mi_decl_export void mi_heap_guarded_set_sample_rate(mi_heap_t* heap, size_t sample_rate, size_t seed);
mi_decl_export void mi_heap_guarded_set_size_bound(mi_heap_t* heap, size_t min, size_t max);
// ------------------------------------------------------ // ------------------------------------------------------
// Convenience // Convenience
@ -349,7 +355,7 @@ typedef enum mi_option_e {
mi_option_deprecated_segment_cache, mi_option_deprecated_segment_cache,
mi_option_deprecated_page_reset, mi_option_deprecated_page_reset,
mi_option_abandoned_page_purge, // immediately purge delayed purges on thread termination mi_option_abandoned_page_purge, // immediately purge delayed purges on thread termination
mi_option_deprecated_segment_reset, mi_option_deprecated_segment_reset,
mi_option_eager_commit_delay, // the first N segments per thread are not eagerly committed (but per page in the segment on demand) mi_option_eager_commit_delay, // the first N segments per thread are not eagerly committed (but per page in the segment on demand)
mi_option_purge_delay, // memory purging is delayed by N milli seconds; use 0 for immediate purging or -1 for no purging at all. (=10) mi_option_purge_delay, // memory purging is delayed by N milli seconds; use 0 for immediate purging or -1 for no purging at all. (=10)
mi_option_use_numa_nodes, // 0 = use all available numa nodes, otherwise use at most N nodes. mi_option_use_numa_nodes, // 0 = use all available numa nodes, otherwise use at most N nodes.
@ -366,8 +372,11 @@ typedef enum mi_option_e {
mi_option_disallow_arena_alloc, // 1 = do not use arena's for allocation (except if using specific arena id's) mi_option_disallow_arena_alloc, // 1 = do not use arena's for allocation (except if using specific arena id's)
mi_option_retry_on_oom, // retry on out-of-memory for N milli seconds (=400), set to 0 to disable retries. (only on windows) mi_option_retry_on_oom, // retry on out-of-memory for N milli seconds (=400), set to 0 to disable retries. (only on windows)
mi_option_visit_abandoned, // allow visiting heap blocks from abandoned threads (=0) mi_option_visit_abandoned, // allow visiting heap blocks from abandoned threads (=0)
mi_option_debug_guarded_min, // only used when building with MI_DEBUG_GUARDED: minimal rounded object size for guarded objects (=0) mi_option_guarded_min, // only used when building with MI_GUARDED: minimal rounded object size for guarded objects (=0)
mi_option_debug_guarded_max, // only used when building with MI_DEBUG_GUARDED: maximal rounded object size for guarded objects (=0) mi_option_guarded_max, // only used when building with MI_GUARDED: maximal rounded object size for guarded objects (=0)
mi_option_guarded_precise, // disregard minimal alignment requirement to always place guarded blocks exactly in front of a guard page (=0)
mi_option_guarded_sample_rate, // 1 out of N allocations in the min/max range will be guarded (=1000)
mi_option_guarded_sample_seed, // can be set to allow for a (more) deterministic re-execution when a guard page is triggered (=0)
_mi_option_last, _mi_option_last,
// legacy option names // legacy option names
mi_option_large_os_pages = mi_option_allow_large_os_pages, mi_option_large_os_pages = mi_option_allow_large_os_pages,
@ -537,7 +546,7 @@ template<class T, bool _mi_destroy> struct _mi_heap_stl_allocator_common : publi
protected: protected:
std::shared_ptr<mi_heap_t> heap; std::shared_ptr<mi_heap_t> heap;
template<class U, bool D> friend struct _mi_heap_stl_allocator_common; template<class U, bool D> friend struct _mi_heap_stl_allocator_common;
_mi_heap_stl_allocator_common() { _mi_heap_stl_allocator_common() {
mi_heap_t* hp = mi_heap_new(); mi_heap_t* hp = mi_heap_new();
this->heap.reset(hp, (_mi_destroy ? &heap_destroy : &heap_delete)); /* calls heap_delete/destroy when the refcount drops to zero */ this->heap.reset(hp, (_mi_destroy ? &heap_destroy : &heap_delete)); /* calls heap_delete/destroy when the refcount drops to zero */
@ -554,7 +563,7 @@ private:
template<class T> struct mi_heap_stl_allocator : public _mi_heap_stl_allocator_common<T, false> { template<class T> struct mi_heap_stl_allocator : public _mi_heap_stl_allocator_common<T, false> {
using typename _mi_heap_stl_allocator_common<T, false>::size_type; using typename _mi_heap_stl_allocator_common<T, false>::size_type;
mi_heap_stl_allocator() : _mi_heap_stl_allocator_common<T, false>() { } // creates fresh heap that is deleted when the destructor is called mi_heap_stl_allocator() : _mi_heap_stl_allocator_common<T, false>() { } // creates fresh heap that is deleted when the destructor is called
mi_heap_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common<T, false>(hp) { } // no delete nor destroy on the passed in heap mi_heap_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common<T, false>(hp) { } // no delete nor destroy on the passed in heap
template<class U> mi_heap_stl_allocator(const mi_heap_stl_allocator<U>& x) mi_attr_noexcept : _mi_heap_stl_allocator_common<T, false>(x) { } template<class U> mi_heap_stl_allocator(const mi_heap_stl_allocator<U>& x) mi_attr_noexcept : _mi_heap_stl_allocator_common<T, false>(x) { }
mi_heap_stl_allocator select_on_container_copy_construction() const { return *this; } mi_heap_stl_allocator select_on_container_copy_construction() const { return *this; }
@ -571,7 +580,7 @@ template<class T1, class T2> bool operator!=(const mi_heap_stl_allocator<T1>& x,
template<class T> struct mi_heap_destroy_stl_allocator : public _mi_heap_stl_allocator_common<T, true> { template<class T> struct mi_heap_destroy_stl_allocator : public _mi_heap_stl_allocator_common<T, true> {
using typename _mi_heap_stl_allocator_common<T, true>::size_type; using typename _mi_heap_stl_allocator_common<T, true>::size_type;
mi_heap_destroy_stl_allocator() : _mi_heap_stl_allocator_common<T, true>() { } // creates fresh heap that is destroyed when the destructor is called mi_heap_destroy_stl_allocator() : _mi_heap_stl_allocator_common<T, true>() { } // creates fresh heap that is destroyed when the destructor is called
mi_heap_destroy_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common<T, true>(hp) { } // no delete nor destroy on the passed in heap mi_heap_destroy_stl_allocator(mi_heap_t* hp) : _mi_heap_stl_allocator_common<T, true>(hp) { } // no delete nor destroy on the passed in heap
template<class U> mi_heap_destroy_stl_allocator(const mi_heap_destroy_stl_allocator<U>& x) mi_attr_noexcept : _mi_heap_stl_allocator_common<T, true>(x) { } template<class U> mi_heap_destroy_stl_allocator(const mi_heap_destroy_stl_allocator<U>& x) mi_attr_noexcept : _mi_heap_stl_allocator_common<T, true>(x) { }
mi_heap_destroy_stl_allocator select_on_container_copy_construction() const { return *this; } mi_heap_destroy_stl_allocator select_on_container_copy_construction() const { return *this; }

View file

@ -77,6 +77,11 @@ static inline uintptr_t _mi_random_shuffle(uintptr_t x);
// init.c // init.c
extern mi_decl_cache_align mi_stats_t _mi_stats_main; extern mi_decl_cache_align mi_stats_t _mi_stats_main;
extern mi_decl_cache_align const mi_page_t _mi_page_empty; extern mi_decl_cache_align const mi_page_t _mi_page_empty;
void _mi_process_load(void);
void mi_cdecl _mi_process_done(void);
bool _mi_is_redirected(void);
bool _mi_allocator_init(const char** message);
void _mi_allocator_done(void);
bool _mi_is_main_thread(void); bool _mi_is_main_thread(void);
size_t _mi_current_thread_count(void); size_t _mi_current_thread_count(void);
bool _mi_preloading(void); // true while the C runtime is not initialized yet bool _mi_preloading(void); // true while the C runtime is not initialized yet
@ -86,6 +91,7 @@ void _mi_tld_init(mi_tld_t* tld, mi_heap_t* bheap);
mi_threadid_t _mi_thread_id(void) mi_attr_noexcept; mi_threadid_t _mi_thread_id(void) mi_attr_noexcept;
mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap
mi_subproc_t* _mi_subproc_from_id(mi_subproc_id_t subproc_id); mi_subproc_t* _mi_subproc_from_id(mi_subproc_id_t subproc_id);
void _mi_heap_guarded_init(mi_heap_t* heap);
// os.c // os.c
void _mi_os_init(void); // called from process init void _mi_os_init(void); // called from process init
@ -595,16 +601,40 @@ static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
page->flags.x.has_aligned = has_aligned; page->flags.x.has_aligned = has_aligned;
} }
#if MI_DEBUG_GUARDED /* -------------------------------------------------------------------
static inline bool mi_page_has_guarded(const mi_page_t* page) { Guarded objects
return page->flags.x.has_guarded; ------------------------------------------------------------------- */
#if MI_GUARDED
static inline bool mi_block_ptr_is_guarded(const mi_block_t* block, const void* p) {
const ptrdiff_t offset = (uint8_t*)p - (uint8_t*)block;
return (offset >= (ptrdiff_t)(sizeof(mi_block_t)) && block->next == MI_BLOCK_TAG_GUARDED);
} }
static inline void mi_page_set_has_guarded(mi_page_t* page, bool has_guarded) { static inline bool mi_heap_malloc_use_guarded(mi_heap_t* heap, size_t size) {
page->flags.x.has_guarded = has_guarded; // this code is written to result in fast assembly as it is on the hot path for allocation
const size_t count = heap->guarded_sample_count - 1; // if the rate was 0, this will underflow and count for a long time..
if mi_likely(count != 0) {
// no sample
heap->guarded_sample_count = count;
return false;
}
else if (size >= heap->guarded_size_min && size <= heap->guarded_size_max) {
// use guarded allocation
heap->guarded_sample_count = heap->guarded_sample_rate; // reset
return (heap->guarded_sample_rate != 0);
}
else {
// failed size criteria, rewind count (but don't write to an empty heap)
if (heap->guarded_sample_rate != 0) { heap->guarded_sample_count = 1; }
return false;
}
} }
mi_decl_restrict void* _mi_heap_malloc_guarded(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
#endif #endif
/* ------------------------------------------------------------------- /* -------------------------------------------------------------------
Encoding/Decoding the free list next pointers Encoding/Decoding the free list next pointers
@ -662,6 +692,16 @@ static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const
return mi_rotl(x ^ keys[1], keys[0]) + keys[0]; return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
} }
static inline uint32_t mi_ptr_encode_canary(const void* null, const void* p, const uintptr_t* keys) {
const uint32_t x = (uint32_t)(mi_ptr_encode(null,p,keys));
// make the lowest byte 0 to prevent spurious read overflows which could be a security issue (issue #951)
#ifdef MI_BIG_ENDIAN
return (x & 0x00FFFFFF);
#else
return (x & 0xFFFFFF00);
#endif
}
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) { static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) {
mi_track_mem_defined(block,sizeof(mi_block_t)); mi_track_mem_defined(block,sizeof(mi_block_t));
mi_block_t* next; mi_block_t* next;

View file

@ -25,6 +25,8 @@ typedef struct mi_os_mem_config_s {
size_t page_size; // default to 4KiB size_t page_size; // default to 4KiB
size_t large_page_size; // 0 if not supported, usually 2MiB (4MiB on Windows) size_t large_page_size; // 0 if not supported, usually 2MiB (4MiB on Windows)
size_t alloc_granularity; // smallest allocation size (usually 4KiB, on Windows 64KiB) size_t alloc_granularity; // smallest allocation size (usually 4KiB, on Windows 64KiB)
size_t physical_memory; // physical memory size
size_t virtual_address_bits; // usually 48 or 56 bits on 64-bit systems. (used to determine secure randomization)
bool has_overcommit; // can we reserve more memory than can be actually committed? bool has_overcommit; // can we reserve more memory than can be actually committed?
bool has_partial_free; // can allocated blocks be freed partially? (true for mmap, false for VirtualAlloc) bool has_partial_free; // can allocated blocks be freed partially? (true for mmap, false for VirtualAlloc)
bool has_virtual_reserve; // supports virtual address space reservation? (if true we can reserve virtual address space without using commit or physical memory) bool has_virtual_reserve; // supports virtual address space reservation? (if true we can reserve virtual address space without using commit or physical memory)
@ -41,9 +43,10 @@ int _mi_prim_free(void* addr, size_t size );
// If `commit` is false, the virtual memory range only needs to be reserved (with no access) // If `commit` is false, the virtual memory range only needs to be reserved (with no access)
// which will later be committed explicitly using `_mi_prim_commit`. // which will later be committed explicitly using `_mi_prim_commit`.
// `is_zero` is set to true if the memory was zero initialized (as on most OS's) // `is_zero` is set to true if the memory was zero initialized (as on most OS's)
// The `hint_addr` address is either `NULL` or a preferred allocation address but can be ignored.
// pre: !commit => !allow_large // pre: !commit => !allow_large
// try_alignment >= _mi_os_page_size() and a power of 2 // try_alignment >= _mi_os_page_size() and a power of 2
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr); int _mi_prim_alloc(void* hint_addr, size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr);
// Commit memory. Returns error code or 0 on success. // Commit memory. Returns error code or 0 on success.
// For example, on Linux this would make the memory PROT_READ|PROT_WRITE. // For example, on Linux this would make the memory PROT_READ|PROT_WRITE.

View file

@ -74,8 +74,8 @@ terms of the MIT license. A copy of the license can be found in the file
// Use guard pages behind objects of a certain size (set by the MIMALLOC_DEBUG_GUARDED_MIN/MAX options) // Use guard pages behind objects of a certain size (set by the MIMALLOC_DEBUG_GUARDED_MIN/MAX options)
// Padding should be disabled when using guard pages // Padding should be disabled when using guard pages
// #define MI_DEBUG_GUARDED 1 // #define MI_GUARDED 1
#if defined(MI_DEBUG_GUARDED) #if defined(MI_GUARDED)
#define MI_PADDING 0 #define MI_PADDING 0
#endif #endif
@ -232,6 +232,13 @@ typedef struct mi_block_s {
mi_encoded_t next; mi_encoded_t next;
} mi_block_t; } mi_block_t;
#if MI_GUARDED
// we always align guarded pointers in a block at an offset
// the block `next` field is then used as a tag to distinguish regular offset aligned blocks from guarded ones
#define MI_BLOCK_TAG_ALIGNED ((mi_encoded_t)(0))
#define MI_BLOCK_TAG_GUARDED (~MI_BLOCK_TAG_ALIGNED)
#endif
// The delayed flags are used for efficient multi-threaded free-ing // The delayed flags are used for efficient multi-threaded free-ing
typedef enum mi_delayed_e { typedef enum mi_delayed_e {
@ -250,7 +257,6 @@ typedef union mi_page_flags_s {
struct { struct {
uint8_t in_full : 1; uint8_t in_full : 1;
uint8_t has_aligned : 1; uint8_t has_aligned : 1;
uint8_t has_guarded : 1; // only used with MI_DEBUG_GUARDED
} x; } x;
} mi_page_flags_t; } mi_page_flags_t;
#else #else
@ -260,7 +266,6 @@ typedef union mi_page_flags_s {
struct { struct {
uint8_t in_full; uint8_t in_full;
uint8_t has_aligned; uint8_t has_aligned;
uint8_t has_guarded; // only used with MI_DEBUG_GUARDED
} x; } x;
} mi_page_flags_t; } mi_page_flags_t;
#endif #endif
@ -497,6 +502,13 @@ struct mi_heap_s {
mi_heap_t* next; // list of heaps per thread mi_heap_t* next; // list of heaps per thread
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
uint8_t tag; // custom tag, can be used for separating heaps based on the object types uint8_t tag; // custom tag, can be used for separating heaps based on the object types
#if MI_GUARDED
size_t guarded_size_min; // minimal size for guarded objects
size_t guarded_size_max; // maximal size for guarded objects
size_t guarded_sample_rate; // sample rate (set to 0 to disable guarded pages)
size_t guarded_sample_seed; // starting sample count
size_t guarded_sample_count; // current sample count (counting down to 0)
#endif
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size. mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin") mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
}; };
@ -589,6 +601,7 @@ typedef struct mi_stats_s {
mi_stat_counter_t arena_count; mi_stat_counter_t arena_count;
mi_stat_counter_t arena_crossover_count; mi_stat_counter_t arena_crossover_count;
mi_stat_counter_t arena_rollback_count; mi_stat_counter_t arena_rollback_count;
mi_stat_counter_t guarded_alloc_count;
#if MI_STAT>1 #if MI_STAT>1
mi_stat_count_t normal_bins[MI_BIN_HUGE+1]; mi_stat_count_t normal_bins[MI_BIN_HUGE+1];
#endif #endif

View file

@ -20,14 +20,36 @@ static bool mi_malloc_is_naturally_aligned( size_t size, size_t alignment ) {
mi_assert_internal(_mi_is_power_of_two(alignment) && (alignment > 0)); mi_assert_internal(_mi_is_power_of_two(alignment) && (alignment > 0));
if (alignment > size) return false; if (alignment > size) return false;
if (alignment <= MI_MAX_ALIGN_SIZE) return true; if (alignment <= MI_MAX_ALIGN_SIZE) return true;
#if MI_DEBUG_GUARDED
return false;
#else
const size_t bsize = mi_good_size(size); const size_t bsize = mi_good_size(size);
return (bsize <= MI_MAX_ALIGN_GUARANTEE && (bsize & (alignment-1)) == 0); return (bsize <= MI_MAX_ALIGN_GUARANTEE && (bsize & (alignment-1)) == 0);
#endif
} }
#if MI_GUARDED
static mi_decl_restrict void* mi_heap_malloc_guarded_aligned(mi_heap_t* heap, size_t size, size_t alignment, bool zero) mi_attr_noexcept {
// use over allocation for guarded blocksl
mi_assert_internal(alignment > 0 && alignment < MI_BLOCK_ALIGNMENT_MAX);
const size_t oversize = size + alignment - 1;
void* base = _mi_heap_malloc_guarded(heap, oversize, zero);
void* p = mi_align_up_ptr(base, alignment);
mi_track_align(base, p, (uint8_t*)p - (uint8_t*)base, size);
mi_assert_internal(mi_usable_size(p) >= size);
mi_assert_internal(_mi_is_aligned(p, alignment));
return p;
}
static void* mi_heap_malloc_zero_no_guarded(mi_heap_t* heap, size_t size, bool zero) {
const size_t rate = heap->guarded_sample_rate;
heap->guarded_sample_rate = 0;
void* p = _mi_heap_malloc_zero(heap, size, zero);
heap->guarded_sample_rate = rate;
return p;
}
#else
static void* mi_heap_malloc_zero_no_guarded(mi_heap_t* heap, size_t size, bool zero) {
return _mi_heap_malloc_zero(heap, size, zero);
}
#endif
// Fallback aligned allocation that over-allocates -- split out for better codegen // Fallback aligned allocation that over-allocates -- split out for better codegen
static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
{ {
@ -48,6 +70,7 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t
return NULL; return NULL;
} }
oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size); oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size);
// note: no guarded as alignment > 0
p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block
// zero afterwards as only the area from the aligned_p may be committed! // zero afterwards as only the area from the aligned_p may be committed!
if (p == NULL) return NULL; if (p == NULL) return NULL;
@ -55,11 +78,11 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t
else { else {
// otherwise over-allocate // otherwise over-allocate
oversize = size + alignment - 1; oversize = size + alignment - 1;
p = _mi_heap_malloc_zero(heap, oversize, zero); p = mi_heap_malloc_zero_no_guarded(heap, oversize, zero);
if (p == NULL) return NULL; if (p == NULL) return NULL;
} }
mi_page_t* page = _mi_ptr_page(p); mi_page_t* page = _mi_ptr_page(p);
// .. and align within the allocation // .. and align within the allocation
const uintptr_t align_mask = alignment - 1; // for any x, `(x & align_mask) == (x % alignment)` const uintptr_t align_mask = alignment - 1; // for any x, `(x & align_mask) == (x % alignment)`
const uintptr_t poffset = ((uintptr_t)p + offset) & align_mask; const uintptr_t poffset = ((uintptr_t)p + offset) & align_mask;
@ -68,6 +91,13 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t
void* aligned_p = (void*)((uintptr_t)p + adjust); void* aligned_p = (void*)((uintptr_t)p + adjust);
if (aligned_p != p) { if (aligned_p != p) {
mi_page_set_has_aligned(page, true); mi_page_set_has_aligned(page, true);
#if MI_GUARDED
// set tag to aligned so mi_usable_size works with guard pages
if (adjust >= sizeof(mi_block_t)) {
mi_block_t* const block = (mi_block_t*)p;
block->next = MI_BLOCK_TAG_ALIGNED;
}
#endif
_mi_padding_shrink(page, (mi_block_t*)p, adjust + size); _mi_padding_shrink(page, (mi_block_t*)p, adjust + size);
} }
// todo: expand padding if overallocated ? // todo: expand padding if overallocated ?
@ -76,8 +106,10 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t
mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0); mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
mi_assert_internal(mi_usable_size(aligned_p)>=size); mi_assert_internal(mi_usable_size(aligned_p)>=size);
mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust); mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust);
#if !MI_DEBUG_GUARDED #if MI_DEBUG > 1
mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_page(aligned_p), aligned_p)); mi_page_t* const apage = _mi_ptr_page(aligned_p);
void* unalign_p = _mi_page_ptr_unalign(apage, aligned_p);
mi_assert_internal(p == unalign_p);
#endif #endif
// now zero the block if needed // now zero the block if needed
@ -91,6 +123,9 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_overalloc(mi_heap_t
if (p != aligned_p) { if (p != aligned_p) {
mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p)); mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p));
#if MI_GUARDED
mi_track_mem_defined(p, sizeof(mi_block_t));
#endif
} }
return aligned_p; return aligned_p;
} }
@ -100,27 +135,27 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_generic(mi_heap_t*
{ {
mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment)); mi_assert_internal(alignment != 0 && _mi_is_power_of_two(alignment));
// we don't allocate more than MI_MAX_ALLOC_SIZE (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) // we don't allocate more than MI_MAX_ALLOC_SIZE (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
if mi_unlikely(size > (MI_MAX_ALLOC_SIZE - MI_PADDING_SIZE)) { if mi_unlikely(size > (MI_MAX_ALLOC_SIZE - MI_PADDING_SIZE)) {
#if MI_DEBUG > 0 #if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment); _mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment);
#endif #endif
return NULL; return NULL;
} }
// use regular allocation if it is guaranteed to fit the alignment constraints. // use regular allocation if it is guaranteed to fit the alignment constraints.
// this is important to try as the fast path in `mi_heap_malloc_zero_aligned` only works when there exist // this is important to try as the fast path in `mi_heap_malloc_zero_aligned` only works when there exist
// a page with the right block size, and if we always use the over-alloc fallback that would never happen. // a page with the right block size, and if we always use the over-alloc fallback that would never happen.
if (offset == 0 && mi_malloc_is_naturally_aligned(size,alignment)) { if (offset == 0 && mi_malloc_is_naturally_aligned(size,alignment)) {
void* p = _mi_heap_malloc_zero(heap, size, zero); void* p = mi_heap_malloc_zero_no_guarded(heap, size, zero);
mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0); mi_assert_internal(p == NULL || ((uintptr_t)p % alignment) == 0);
const bool is_aligned_or_null = (((uintptr_t)p) & (alignment-1))==0; const bool is_aligned_or_null = (((uintptr_t)p) & (alignment-1))==0;
if mi_likely(is_aligned_or_null) { if mi_likely(is_aligned_or_null) {
return p; return p;
} }
else { else {
// this should never happen if the `mi_malloc_is_naturally_aligned` check is correct.. // this should never happen if the `mi_malloc_is_naturally_aligned` check is correct..
mi_assert(false); mi_assert(false);
mi_free(p); mi_free(p);
} }
} }
@ -128,6 +163,7 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_generic(mi_heap_t*
return mi_heap_malloc_zero_aligned_at_overalloc(heap,size,alignment,offset,zero); return mi_heap_malloc_zero_aligned_at_overalloc(heap,size,alignment,offset,zero);
} }
// Primitive aligned allocation // Primitive aligned allocation
static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t size, const size_t alignment, const size_t offset, const bool zero) mi_attr_noexcept
{ {
@ -138,12 +174,17 @@ static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t
#endif #endif
return NULL; return NULL;
} }
#if !MI_DEBUG_GUARDED #if MI_GUARDED
if (offset==0 && alignment < MI_BLOCK_ALIGNMENT_MAX && mi_heap_malloc_use_guarded(heap,size)) {
return mi_heap_malloc_guarded_aligned(heap, size, alignment, zero);
}
#endif
// try first if there happens to be a small block available with just the right alignment // try first if there happens to be a small block available with just the right alignment
if mi_likely(size <= MI_SMALL_SIZE_MAX && alignment <= size) { if mi_likely(size <= MI_SMALL_SIZE_MAX && alignment <= size) {
const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)` const uintptr_t align_mask = alignment-1; // for any x, `(x & align_mask) == (x % alignment)`
const size_t padsize = size + MI_PADDING_SIZE; const size_t padsize = size + MI_PADDING_SIZE;
mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize); mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize);
if mi_likely(page->free != NULL) { if mi_likely(page->free != NULL) {
const bool is_aligned = (((uintptr_t)page->free + offset) & align_mask)==0; const bool is_aligned = (((uintptr_t)page->free + offset) & align_mask)==0;
@ -160,7 +201,6 @@ static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t
} }
} }
} }
#endif
// fallback to generic aligned allocation // fallback to generic aligned allocation
return mi_heap_malloc_zero_aligned_at_generic(heap, size, alignment, offset, zero); return mi_heap_malloc_zero_aligned_at_generic(heap, size, alignment, offset, zero);
@ -313,3 +353,5 @@ mi_decl_nodiscard void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t
mi_decl_nodiscard void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept { mi_decl_nodiscard void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
return mi_heap_recalloc_aligned(mi_prim_get_default_heap(), p, newcount, size, alignment); return mi_heap_recalloc_aligned(mi_prim_get_default_heap(), p, newcount, size, alignment);
} }

View file

@ -289,8 +289,8 @@ mi_decl_weak int reallocarr(void* p, size_t count, size_t size) { return mi_r
void __libc_free(void* p) MI_FORWARD0(mi_free, p) void __libc_free(void* p) MI_FORWARD0(mi_free, p)
void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); } void* __libc_memalign(size_t alignment, size_t size) { return mi_memalign(alignment, size); }
#elif defined(__GLIBC__) && defined(__linux__) #elif defined(__linux__)
// forward __libc interface (needed for glibc-based Linux distributions) // forward __libc interface (needed for glibc-based and musl-based Linux distributions)
void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc,size) void* __libc_malloc(size_t size) MI_FORWARD1(mi_malloc,size)
void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc,count,size) void* __libc_calloc(size_t count, size_t size) MI_FORWARD2(mi_calloc,count,size)
void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc,p,size) void* __libc_realloc(void* p, size_t size) MI_FORWARD2(mi_realloc,p,size)

View file

@ -31,22 +31,22 @@ terms of the MIT license. A copy of the license can be found in the file
extern inline void* _mi_page_malloc_zero(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept extern inline void* _mi_page_malloc_zero(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept
{ {
mi_assert_internal(page->block_size == 0 /* empty heap */ || mi_page_block_size(page) >= size); mi_assert_internal(page->block_size == 0 /* empty heap */ || mi_page_block_size(page) >= size);
// check the free list // check the free list
mi_block_t* const block = page->free; mi_block_t* const block = page->free;
if mi_unlikely(block == NULL) { if mi_unlikely(block == NULL) {
return _mi_malloc_generic(heap, size, zero, 0); return _mi_malloc_generic(heap, size, zero, 0);
} }
mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
// pop from the free list // pop from the free list
page->free = mi_block_next(page, block); page->free = mi_block_next(page, block);
page->used++; page->used++;
mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
mi_assert_internal(page->block_size < MI_MAX_ALIGN_SIZE || _mi_is_aligned(block, MI_MAX_ALIGN_SIZE)); mi_assert_internal(page->block_size < MI_MAX_ALIGN_SIZE || _mi_is_aligned(block, MI_MAX_ALIGN_SIZE));
#if MI_DEBUG>3 #if MI_DEBUG>3
if (page->free_is_zero && size > sizeof(*block)) { if (page->free_is_zero && size > sizeof(*block)) {
mi_assert_expensive(mi_mem_is_zero(block+1,size - sizeof(*block))); mi_assert_expensive(mi_mem_is_zero(block+1,size - sizeof(*block)));
} }
#endif #endif
@ -99,7 +99,7 @@ extern inline void* _mi_page_malloc_zero(mi_heap_t* heap, mi_page_t* page, size_
mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta)); mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
#endif #endif
mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess
padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys)); padding->canary = mi_ptr_encode_canary(page,block,page->keys);
padding->delta = (uint32_t)(delta); padding->delta = (uint32_t)(delta);
#if MI_PADDING_CHECK #if MI_PADDING_CHECK
if (!mi_page_is_huge(page)) { if (!mi_page_is_huge(page)) {
@ -121,10 +121,8 @@ extern void* _mi_page_malloc_zeroed(mi_heap_t* heap, mi_page_t* page, size_t siz
return _mi_page_malloc_zero(heap,page,size,true); return _mi_page_malloc_zero(heap,page,size,true);
} }
#if MI_DEBUG_GUARDED #if MI_GUARDED
static mi_decl_restrict void* mi_heap_malloc_guarded(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept; mi_decl_restrict void* _mi_heap_malloc_guarded(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
static inline bool mi_heap_malloc_use_guarded(size_t size, bool has_huge_alignment);
static inline bool mi_heap_malloc_small_use_guarded(size_t size);
#endif #endif
static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
@ -134,11 +132,13 @@ static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap,
const uintptr_t tid = _mi_thread_id(); const uintptr_t tid = _mi_thread_id();
mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local mi_assert(heap->thread_id == 0 || heap->thread_id == tid); // heaps are thread local
#endif #endif
#if (MI_PADDING || MI_DEBUG_GUARDED) #if (MI_PADDING || MI_GUARDED)
if (size == 0) { size = sizeof(void*); } if (size == 0) { size = sizeof(void*); }
#endif #endif
#if MI_DEBUG_GUARDED #if MI_GUARDED
if (mi_heap_malloc_small_use_guarded(size)) { return mi_heap_malloc_guarded(heap, size, zero); } if (mi_heap_malloc_use_guarded(heap,size)) {
return _mi_heap_malloc_guarded(heap, size, zero);
}
#endif #endif
// get page in constant time, and allocate from it // get page in constant time, and allocate from it
@ -171,13 +171,15 @@ mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t si
// The main allocation function // The main allocation function
extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept { extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept {
// fast path for small objects // fast path for small objects
if mi_likely(size <= MI_SMALL_SIZE_MAX) { if mi_likely(size <= MI_SMALL_SIZE_MAX) {
mi_assert_internal(huge_alignment == 0); mi_assert_internal(huge_alignment == 0);
return mi_heap_malloc_small_zero(heap, size, zero); return mi_heap_malloc_small_zero(heap, size, zero);
} }
#if MI_DEBUG_GUARDED #if MI_GUARDED
else if (mi_heap_malloc_use_guarded(size,huge_alignment>0)) { return mi_heap_malloc_guarded(heap, size, zero); } else if (huge_alignment==0 && mi_heap_malloc_use_guarded(heap,size)) {
return _mi_heap_malloc_guarded(heap, size, zero);
}
#endif #endif
else { else {
// regular allocation // regular allocation
@ -185,7 +187,7 @@ extern inline void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool z
mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment); // note: size can overflow but it is detected in malloc_generic void* const p = _mi_malloc_generic(heap, size + MI_PADDING_SIZE, zero, huge_alignment); // note: size can overflow but it is detected in malloc_generic
mi_track_malloc(p,size,zero); mi_track_malloc(p,size,zero);
#if MI_STAT>1 #if MI_STAT>1
if (p != NULL) { if (p != NULL) {
if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
@ -601,69 +603,73 @@ mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
} }
} }
#if MI_DEBUG_GUARDED #if MI_GUARDED
static inline bool mi_heap_malloc_small_use_guarded(size_t size) { // We always allocate a guarded allocation at an offset (`mi_page_has_aligned` will be true).
return (size <= (size_t)_mi_option_get_fast(mi_option_debug_guarded_max) // We then set the first word of the block to `0` for regular offset aligned allocations (in `alloc-aligned.c`)
&& size >= (size_t)_mi_option_get_fast(mi_option_debug_guarded_min)); // and the first word to `~0` for guarded allocations to have a correct `mi_usable_size`
static void* mi_block_ptr_set_guarded(mi_block_t* block, size_t obj_size) {
// TODO: we can still make padding work by moving it out of the guard page area
mi_page_t* const page = _mi_ptr_page(block);
mi_page_set_has_aligned(page, true);
block->next = MI_BLOCK_TAG_GUARDED;
// set guard page at the end of the block
mi_segment_t* const segment = _mi_page_segment(page);
const size_t block_size = mi_page_block_size(page); // must use `block_size` to match `mi_free_local`
const size_t os_page_size = _mi_os_page_size();
mi_assert_internal(block_size >= obj_size + os_page_size + sizeof(mi_block_t));
if (block_size < obj_size + os_page_size + sizeof(mi_block_t)) {
// should never happen
mi_free(block);
return NULL;
}
uint8_t* guard_page = (uint8_t*)block + block_size - os_page_size;
mi_assert_internal(_mi_is_aligned(guard_page, os_page_size));
if (segment->allow_decommit && _mi_is_aligned(guard_page, os_page_size)) {
_mi_os_protect(guard_page, os_page_size);
}
else {
_mi_warning_message("unable to set a guard page behind an object due to pinned memory (large OS pages?) (object %p of size %zu)\n", block, block_size);
}
// align pointer just in front of the guard page
size_t offset = block_size - os_page_size - obj_size;
mi_assert_internal(offset > sizeof(mi_block_t));
if (offset > MI_BLOCK_ALIGNMENT_MAX) {
// give up to place it right in front of the guard page if the offset is too large for unalignment
offset = MI_BLOCK_ALIGNMENT_MAX;
}
void* p = (uint8_t*)block + offset;
mi_track_align(block, p, offset, obj_size);
mi_track_mem_defined(block, sizeof(mi_block_t));
return p;
} }
static inline bool mi_heap_malloc_use_guarded(size_t size, bool has_huge_alignment) { mi_decl_restrict void* _mi_heap_malloc_guarded(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept
return (!has_huge_alignment // guarded pages do not work with huge aligments at the moment
&& _mi_option_get_fast(mi_option_debug_guarded_max) > 0 // guarded must be enabled
&& (mi_heap_malloc_small_use_guarded(size)
|| ((mi_good_size(size) & (_mi_os_page_size() - 1)) == 0)) // page-size multiple are always guarded so we can have a correct `mi_usable_size`.
);
}
static mi_decl_restrict void* mi_heap_malloc_guarded(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept
{ {
#if defined(MI_PADDING_SIZE) #if defined(MI_PADDING_SIZE)
mi_assert(MI_PADDING_SIZE==0); mi_assert(MI_PADDING_SIZE==0);
#endif #endif
// allocate multiple of page size ending in a guard page // allocate multiple of page size ending in a guard page
const size_t obj_size = _mi_align_up(size, MI_MAX_ALIGN_SIZE); // ensure minimal alignment requirement // ensure minimal alignment requirement?
const size_t os_page_size = _mi_os_page_size(); const size_t os_page_size = _mi_os_page_size();
const size_t req_size = _mi_align_up(obj_size + os_page_size, os_page_size); const size_t obj_size = (mi_option_is_enabled(mi_option_guarded_precise) ? size : _mi_align_up(size, MI_MAX_ALIGN_SIZE));
void* const block = _mi_malloc_generic(heap, req_size, zero, 0 /* huge_alignment */); const size_t bsize = _mi_align_up(_mi_align_up(obj_size, MI_MAX_ALIGN_SIZE) + sizeof(mi_block_t), MI_MAX_ALIGN_SIZE);
const size_t req_size = _mi_align_up(bsize + os_page_size, os_page_size);
mi_block_t* const block = (mi_block_t*)_mi_malloc_generic(heap, req_size, zero, 0 /* huge_alignment */);
if (block==NULL) return NULL; if (block==NULL) return NULL;
mi_page_t* page = _mi_ptr_page(block); void* const p = mi_block_ptr_set_guarded(block, obj_size);
mi_segment_t* segment = _mi_page_segment(page);
const size_t block_size = mi_page_block_size(page); // must use `block_size` to match `mi_free_local`
void* const guard_page = (uint8_t*)block + (block_size - os_page_size);
mi_assert_internal(_mi_is_aligned(guard_page, os_page_size));
// place block in front of the guard page
size_t offset = block_size - os_page_size - obj_size;
if (offset > MI_BLOCK_ALIGNMENT_MAX) {
// give up to place it right in front of the guard page if the offset is too large for unalignment
offset = MI_BLOCK_ALIGNMENT_MAX;
}
void* const p = (uint8_t*)block + offset;
mi_assert_internal(p>=block);
// set page flags
if (offset > 0) {
mi_page_set_has_aligned(page, true);
}
// set guard page
if (segment->allow_decommit) {
mi_page_set_has_guarded(page, true);
_mi_os_protect(guard_page, os_page_size);
}
else {
_mi_warning_message("unable to set a guard page behind an object due to pinned memory (large OS pages?) (object %p of size %zu)\n", p, size);
}
// stats // stats
mi_track_malloc(p, size, zero); mi_track_malloc(p, size, zero);
#if MI_STAT>1
if (p != NULL) { if (p != NULL) {
if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
#if MI_STAT>1
mi_heap_stat_increase(heap, malloc, mi_usable_size(p)); mi_heap_stat_increase(heap, malloc, mi_usable_size(p));
#endif
_mi_stat_counter_increase(&heap->tld->stats.guarded_alloc_count, 1);
} }
#endif
#if MI_DEBUG>3 #if MI_DEBUG>3
if (p != NULL && zero) { if (p != NULL && zero) {
mi_assert_expensive(mi_mem_is_zero(p, size)); mi_assert_expensive(mi_mem_is_zero(p, size));

View file

@ -148,7 +148,7 @@ static void mi_arena_segment_os_mark_abandoned(mi_segment_t* segment) {
void _mi_arena_segment_mark_abandoned(mi_segment_t* segment) void _mi_arena_segment_mark_abandoned(mi_segment_t* segment)
{ {
mi_assert_internal(segment->used == segment->abandoned); mi_assert_internal(segment->used == segment->abandoned);
mi_atomic_store_release(&segment->thread_id, 0); // mark as abandoned for multi-thread free's mi_atomic_store_release(&segment->thread_id, (uintptr_t)0); // mark as abandoned for multi-thread free's
if mi_unlikely(segment->memid.memkind != MI_MEM_ARENA) { if mi_unlikely(segment->memid.memkind != MI_MEM_ARENA) {
mi_arena_segment_os_mark_abandoned(segment); mi_arena_segment_os_mark_abandoned(segment);
return; return;
@ -237,7 +237,7 @@ static mi_segment_t* mi_arena_segment_clear_abandoned_at(mi_arena_t* arena, mi_s
static mi_segment_t* mi_arena_segment_clear_abandoned_next_field(mi_arena_field_cursor_t* previous) { static mi_segment_t* mi_arena_segment_clear_abandoned_next_field(mi_arena_field_cursor_t* previous) {
const size_t max_arena = mi_arena_get_count(); const size_t max_arena = mi_arena_get_count();
size_t field_idx = mi_bitmap_index_field(previous->bitmap_idx); size_t field_idx = mi_bitmap_index_field(previous->bitmap_idx);
size_t bit_idx = mi_bitmap_index_bit_in_field(previous->bitmap_idx) + 1; size_t bit_idx = mi_bitmap_index_bit_in_field(previous->bitmap_idx);
// visit arena's (from the previous cursor) // visit arena's (from the previous cursor)
for (; previous->start < previous->end; previous->start++, field_idx = 0, bit_idx = 0) { for (; previous->start < previous->end; previous->start++, field_idx = 0, bit_idx = 0) {
// index wraps around // index wraps around
@ -266,11 +266,12 @@ static mi_segment_t* mi_arena_segment_clear_abandoned_next_field(mi_arena_field_
// pre-check if the bit is set // pre-check if the bit is set
size_t mask = ((size_t)1 << bit_idx); size_t mask = ((size_t)1 << bit_idx);
if mi_unlikely((field & mask) == mask) { if mi_unlikely((field & mask) == mask) {
previous->bitmap_idx = mi_bitmap_index_create(field_idx, bit_idx); mi_bitmap_index_t bitmap_idx = mi_bitmap_index_create(field_idx, bit_idx);
mi_segment_t* const segment = mi_arena_segment_clear_abandoned_at(arena, previous->subproc, previous->bitmap_idx); mi_segment_t* const segment = mi_arena_segment_clear_abandoned_at(arena, previous->subproc, bitmap_idx);
if (segment != NULL) { if (segment != NULL) {
//mi_assert_internal(arena->blocks_committed == NULL || _mi_bitmap_is_claimed(arena->blocks_committed, arena->field_count, 1, bitmap_idx)); //mi_assert_internal(arena->blocks_committed == NULL || _mi_bitmap_is_claimed(arena->blocks_committed, arena->field_count, 1, bitmap_idx));
if (has_lock) { mi_lock_release(&arena->abandoned_visit_lock); } if (has_lock) { mi_lock_release(&arena->abandoned_visit_lock); }
previous->bitmap_idx = mi_bitmap_index_create_ex(field_idx, bit_idx + 1); // start at next one for the next iteration
return segment; return segment;
} }
} }

View file

@ -289,7 +289,7 @@ static void* mi_arena_try_alloc_at_id(mi_arena_id_t arena_id, bool match_numa_no
bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld ) bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld )
{ {
MI_UNUSED_RELEASE(alignment); MI_UNUSED_RELEASE(alignment);
mi_assert_internal(alignment <= MI_SEGMENT_ALIGN); mi_assert(alignment <= MI_SEGMENT_ALIGN);
const size_t bcount = mi_block_count_of_size(size); const size_t bcount = mi_block_count_of_size(size);
const size_t arena_index = mi_arena_id_index(arena_id); const size_t arena_index = mi_arena_id_index(arena_id);
mi_assert_internal(arena_index < mi_atomic_load_relaxed(&mi_arena_count)); mi_assert_internal(arena_index < mi_atomic_load_relaxed(&mi_arena_count));

View file

@ -35,9 +35,13 @@ typedef mi_bitmap_field_t* mi_bitmap_t;
typedef size_t mi_bitmap_index_t; typedef size_t mi_bitmap_index_t;
// Create a bit index. // Create a bit index.
static inline mi_bitmap_index_t mi_bitmap_index_create_ex(size_t idx, size_t bitidx) {
mi_assert_internal(bitidx <= MI_BITMAP_FIELD_BITS);
return (idx*MI_BITMAP_FIELD_BITS) + bitidx;
}
static inline mi_bitmap_index_t mi_bitmap_index_create(size_t idx, size_t bitidx) { static inline mi_bitmap_index_t mi_bitmap_index_create(size_t idx, size_t bitidx) {
mi_assert_internal(bitidx < MI_BITMAP_FIELD_BITS); mi_assert_internal(bitidx < MI_BITMAP_FIELD_BITS);
return (idx*MI_BITMAP_FIELD_BITS) + bitidx; return mi_bitmap_index_create_ex(idx,bitidx);
} }
// Get the field index from a bit index. // Get the field index from a bit index.

View file

@ -33,8 +33,8 @@ static inline void mi_free_block_local(mi_page_t* page, mi_block_t* block, bool
// checks // checks
if mi_unlikely(mi_check_is_double_free(page, block)) return; if mi_unlikely(mi_check_is_double_free(page, block)) return;
mi_check_padding(page, block); mi_check_padding(page, block);
if (track_stats) { mi_stat_free(page, block); } if (track_stats) { mi_stat_free(page, block); }
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN && !MI_DEBUG_GUARDED #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN && !MI_GUARDED
memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
#endif #endif
if (track_stats) { mi_track_free_size(block, mi_page_usable_size_of(page, block)); } // faster then mi_usable_size as we already know the page and that p is unaligned if (track_stats) { mi_track_free_size(block, mi_page_usable_size_of(page, block)); } // faster then mi_usable_size as we already know the page and that p is unaligned
@ -69,21 +69,30 @@ mi_block_t* _mi_page_ptr_unalign(const mi_page_t* page, const void* p) {
return (mi_block_t*)((uintptr_t)p - adjust); return (mi_block_t*)((uintptr_t)p - adjust);
} }
// forward declaration for a MI_DEBUG_GUARDED build // forward declaration for a MI_GUARDED build
static void mi_block_unguard(mi_page_t* page, mi_block_t* block); #if MI_GUARDED
static void mi_block_unguard(mi_page_t* page, mi_block_t* block, void* p); // forward declaration
static inline void mi_block_check_unguard(mi_page_t* page, mi_block_t* block, void* p) {
if (mi_block_ptr_is_guarded(block, p)) { mi_block_unguard(page, block, p); }
}
#else
static inline void mi_block_check_unguard(mi_page_t* page, mi_block_t* block, void* p) {
MI_UNUSED(page); MI_UNUSED(block); MI_UNUSED(p);
}
#endif
// free a local pointer (page parameter comes first for better codegen) // free a local pointer (page parameter comes first for better codegen)
static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept { static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
MI_UNUSED(segment); MI_UNUSED(segment);
mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(page, p) : (mi_block_t*)p); mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(page, p) : (mi_block_t*)p);
mi_block_unguard(page,block); mi_block_check_unguard(page, block, p);
mi_free_block_local(page, block, true /* track stats */, true /* check for a full page */); mi_free_block_local(page, block, true /* track stats */, true /* check for a full page */);
} }
// free a pointer owned by another thread (page parameter comes first for better codegen) // free a pointer owned by another thread (page parameter comes first for better codegen)
static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept { static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
mi_block_t* const block = _mi_page_ptr_unalign(page, p); // don't check `has_aligned` flag to avoid a race (issue #865) mi_block_t* const block = _mi_page_ptr_unalign(page, p); // don't check `has_aligned` flag to avoid a race (issue #865)
mi_block_unguard(page, block); mi_block_check_unguard(page, block, p);
mi_free_block_mt(page, segment, block); mi_free_block_mt(page, segment, block);
} }
@ -100,17 +109,17 @@ static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* ms
{ {
MI_UNUSED(msg); MI_UNUSED(msg);
#if (MI_DEBUG>0) #if (MI_DEBUG>0)
if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) { if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0 && !mi_option_is_enabled(mi_option_guarded_precise)) {
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
return NULL; return NULL;
} }
#endif #endif
mi_segment_t* const segment = _mi_ptr_segment(p); mi_segment_t* const segment = _mi_ptr_segment(p);
if mi_unlikely(segment==NULL) return segment; if mi_unlikely(segment==NULL) return segment;
#if (MI_DEBUG>0) #if (MI_DEBUG>0)
if mi_unlikely(!mi_is_in_heap_region(p)) { if mi_unlikely(!mi_is_in_heap_region(p)) {
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p); "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
@ -118,13 +127,13 @@ static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* ms
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
} }
} }
#endif #endif
#if (MI_DEBUG>0 || MI_SECURE>=4) #if (MI_DEBUG>0 || MI_SECURE>=4)
if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) { if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
_mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p); _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
return NULL; return NULL;
} }
#endif #endif
return segment; return segment;
} }
@ -236,11 +245,12 @@ static void mi_decl_noinline mi_free_block_delayed_mt( mi_page_t* page, mi_block
static void mi_decl_noinline mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block) static void mi_decl_noinline mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block)
{ {
// first see if the segment was abandoned and if we can reclaim it into our thread // first see if the segment was abandoned and if we can reclaim it into our thread
if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) && if (_mi_option_get_fast(mi_option_abandoned_reclaim_on_free) != 0 &&
#if MI_HUGE_PAGE_ABANDON #if MI_HUGE_PAGE_ABANDON
segment->page_kind != MI_PAGE_HUGE && segment->page_kind != MI_PAGE_HUGE &&
#endif #endif
mi_atomic_load_relaxed(&segment->thread_id) == 0) mi_atomic_load_relaxed(&segment->thread_id) == 0 && // segment is abandoned?
mi_prim_get_default_heap() != (mi_heap_t*)&_mi_heap_empty) // and we did not already exit this thread (without this check, a fresh heap will be initalized (issue #944))
{ {
// the segment is abandoned, try to reclaim it into our heap // the segment is abandoned, try to reclaim it into our heap
if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) { if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) {
@ -296,20 +306,19 @@ static size_t mi_decl_noinline mi_page_usable_aligned_size_of(const mi_page_t* p
const size_t size = mi_page_usable_size_of(page, block); const size_t size = mi_page_usable_size_of(page, block);
const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block; const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size); mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
return (size - adjust); const size_t aligned_size = (size - adjust);
#if MI_GUARDED
if (mi_block_ptr_is_guarded(block, p)) {
return aligned_size - _mi_os_page_size();
}
#endif
return aligned_size;
} }
static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept { static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg); const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
if mi_unlikely(segment==NULL) return 0; if mi_unlikely(segment==NULL) return 0;
const mi_page_t* const page = _mi_segment_page_of(segment, p); const mi_page_t* const page = _mi_segment_page_of(segment, p);
#if MI_DEBUG_GUARDED
if (mi_page_has_guarded(page)) {
const size_t bsize = mi_page_usable_aligned_size_of(page, p);
mi_assert_internal(bsize > _mi_os_page_size());
return (bsize > _mi_os_page_size() ? bsize - _mi_os_page_size() : bsize);
} else
#endif
if mi_likely(!mi_page_has_aligned(page)) { if mi_likely(!mi_page_has_aligned(page)) {
const mi_block_t* block = (const mi_block_t*)p; const mi_block_t* block = (const mi_block_t*)p;
return mi_page_usable_size_of(page, block); return mi_page_usable_size_of(page, block);
@ -413,7 +422,7 @@ static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* bloc
uintptr_t keys[2]; uintptr_t keys[2];
keys[0] = page->keys[0]; keys[0] = page->keys[0];
keys[1] = page->keys[1]; keys[1] = page->keys[1];
bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize); bool ok = (mi_ptr_encode_canary(page,block,keys) == canary && *delta <= *bsize);
mi_track_mem_noaccess(padding,sizeof(mi_padding_t)); mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
return ok; return ok;
} }
@ -532,23 +541,21 @@ static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
#endif #endif
// Remove guard page when building with MI_DEBUG_GUARDED // Remove guard page when building with MI_GUARDED
#if !MI_DEBUG_GUARDED #if MI_GUARDED
static void mi_block_unguard(mi_page_t* page, mi_block_t* block) { static void mi_block_unguard(mi_page_t* page, mi_block_t* block, void* p) {
MI_UNUSED(page); MI_UNUSED(p);
MI_UNUSED(block); mi_assert_internal(mi_block_ptr_is_guarded(block, p));
// do nothing mi_assert_internal(mi_page_has_aligned(page));
} mi_assert_internal((uint8_t*)p - (uint8_t*)block >= (ptrdiff_t)sizeof(mi_block_t));
#else mi_assert_internal(block->next == MI_BLOCK_TAG_GUARDED);
static void mi_block_unguard(mi_page_t* page, mi_block_t* block) {
if (mi_page_has_guarded(page)) { const size_t bsize = mi_page_block_size(page);
const size_t bsize = mi_page_block_size(page); const size_t psize = _mi_os_page_size();
const size_t psize = _mi_os_page_size(); mi_assert_internal(bsize > psize);
mi_assert_internal(bsize > psize); mi_assert_internal(_mi_page_segment(page)->allow_decommit);
mi_assert_internal(_mi_page_segment(page)->allow_decommit); void* gpage = (uint8_t*)block + bsize - psize;
void* gpage = (uint8_t*)block + (bsize - psize); mi_assert_internal(_mi_is_aligned(gpage, psize));
mi_assert_internal(_mi_is_aligned(gpage, psize)); _mi_os_unprotect(gpage, psize);
_mi_os_unprotect(gpage, psize);
}
} }
#endif #endif

View file

@ -221,6 +221,7 @@ void _mi_heap_init(mi_heap_t* heap, mi_tld_t* tld, mi_arena_id_t arena_id, bool
heap->cookie = _mi_heap_random_next(heap) | 1; heap->cookie = _mi_heap_random_next(heap) | 1;
heap->keys[0] = _mi_heap_random_next(heap); heap->keys[0] = _mi_heap_random_next(heap);
heap->keys[1] = _mi_heap_random_next(heap); heap->keys[1] = _mi_heap_random_next(heap);
_mi_heap_guarded_init(heap);
// push on the thread local heaps list // push on the thread local heaps list
heap->next = heap->tld->heaps; heap->next = heap->tld->heaps;
heap->tld->heaps = heap; heap->tld->heaps = heap;
@ -369,8 +370,8 @@ void mi_heap_destroy(mi_heap_t* heap) {
mi_assert(heap->no_reclaim); mi_assert(heap->no_reclaim);
mi_assert_expensive(mi_heap_is_valid(heap)); mi_assert_expensive(mi_heap_is_valid(heap));
if (heap==NULL || !mi_heap_is_initialized(heap)) return; if (heap==NULL || !mi_heap_is_initialized(heap)) return;
#if MI_DEBUG_GUARDED #if MI_GUARDED
_mi_warning_message("'mi_heap_destroy' called but ignored as MI_DEBUG_GUARDED is enabled (heap at %p)\n", heap); // _mi_warning_message("'mi_heap_destroy' called but MI_GUARDED is enabled -- using `mi_heap_delete` instead (heap at %p)\n", heap);
mi_heap_delete(heap); mi_heap_delete(heap);
return; return;
#else #else
@ -543,13 +544,14 @@ void _mi_heap_area_init(mi_heap_area_t* area, mi_page_t* page) {
static void mi_get_fast_divisor(size_t divisor, uint64_t* magic, size_t* shift) { static void mi_get_fast_divisor(size_t divisor, uint64_t* magic, size_t* shift) {
mi_assert_internal(divisor > 0 && divisor <= UINT32_MAX); mi_assert_internal(divisor > 0 && divisor <= UINT32_MAX);
*shift = 64 - mi_clz(divisor - 1); *shift = MI_INTPTR_BITS - mi_clz(divisor - 1);
*magic = ((((uint64_t)1 << 32) * (((uint64_t)1 << *shift) - divisor)) / divisor + 1); *magic = ((((uint64_t)1 << 32) * (((uint64_t)1 << *shift) - divisor)) / divisor + 1);
} }
static size_t mi_fast_divide(size_t n, uint64_t magic, size_t shift) { static size_t mi_fast_divide(size_t n, uint64_t magic, size_t shift) {
mi_assert_internal(n <= UINT32_MAX); mi_assert_internal(n <= UINT32_MAX);
return ((((uint64_t)n * magic) >> 32) + n) >> shift; const uint64_t hi = ((uint64_t)n * magic) >> 32;
return (size_t)((hi + n) >> shift);
} }
bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t* page, mi_block_visit_fun* visitor, void* arg) { bool _mi_heap_area_visit_blocks(const mi_heap_area_t* area, mi_page_t* page, mi_block_visit_fun* visitor, void* arg) {

View file

@ -86,7 +86,8 @@ const mi_page_t _mi_page_empty = {
MI_STAT_COUNT_NULL(), \ MI_STAT_COUNT_NULL(), \
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \ { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \ { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } \ { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
{ 0, 0 } \
MI_STAT_COUNT_END_NULL() MI_STAT_COUNT_END_NULL()
// -------------------------------------------------------- // --------------------------------------------------------
@ -111,6 +112,9 @@ mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
NULL, // next NULL, // next
false, // can reclaim false, // can reclaim
0, // tag 0, // tag
#if MI_GUARDED
0, 0, 0, 0, 1, // count is 1 so we never write to it (see `internal.h:mi_heap_malloc_use_guarded`)
#endif
MI_SMALL_PAGES_EMPTY, MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY MI_PAGE_QUEUES_EMPTY
}; };
@ -151,6 +155,9 @@ mi_decl_cache_align mi_heap_t _mi_heap_main = {
NULL, // next heap NULL, // next heap
false, // can reclaim false, // can reclaim
0, // tag 0, // tag
#if MI_GUARDED
0, 0, 0, 0, 0,
#endif
MI_SMALL_PAGES_EMPTY, MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY MI_PAGE_QUEUES_EMPTY
}; };
@ -159,6 +166,45 @@ bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`.
mi_stats_t _mi_stats_main = { MI_STATS_NULL }; mi_stats_t _mi_stats_main = { MI_STATS_NULL };
#if MI_GUARDED
mi_decl_export void mi_heap_guarded_set_sample_rate(mi_heap_t* heap, size_t sample_rate, size_t seed) {
heap->guarded_sample_seed = seed;
if (heap->guarded_sample_seed == 0) {
heap->guarded_sample_seed = _mi_heap_random_next(heap);
}
heap->guarded_sample_rate = sample_rate;
if (heap->guarded_sample_rate >= 1) {
heap->guarded_sample_seed = heap->guarded_sample_seed % heap->guarded_sample_rate;
}
heap->guarded_sample_count = heap->guarded_sample_seed; // count down samples
}
mi_decl_export void mi_heap_guarded_set_size_bound(mi_heap_t* heap, size_t min, size_t max) {
heap->guarded_size_min = min;
heap->guarded_size_max = (min > max ? min : max);
}
void _mi_heap_guarded_init(mi_heap_t* heap) {
mi_heap_guarded_set_sample_rate(heap,
(size_t)mi_option_get_clamp(mi_option_guarded_sample_rate, 0, LONG_MAX),
(size_t)mi_option_get(mi_option_guarded_sample_seed));
mi_heap_guarded_set_size_bound(heap,
(size_t)mi_option_get_clamp(mi_option_guarded_min, 0, LONG_MAX),
(size_t)mi_option_get_clamp(mi_option_guarded_max, 0, LONG_MAX) );
}
#else
mi_decl_export void mi_heap_guarded_set_sample_rate(mi_heap_t* heap, size_t sample_rate, size_t seed) {
MI_UNUSED(heap); MI_UNUSED(sample_rate); MI_UNUSED(seed);
}
mi_decl_export void mi_heap_guarded_set_size_bound(mi_heap_t* heap, size_t min, size_t max) {
MI_UNUSED(heap); MI_UNUSED(min); MI_UNUSED(max);
}
void _mi_heap_guarded_init(mi_heap_t* heap) {
MI_UNUSED(heap);
}
#endif
static void mi_heap_main_init(void) { static void mi_heap_main_init(void) {
if (_mi_heap_main.cookie == 0) { if (_mi_heap_main.cookie == 0) {
@ -174,6 +220,7 @@ static void mi_heap_main_init(void) {
_mi_heap_main.keys[1] = _mi_heap_random_next(&_mi_heap_main); _mi_heap_main.keys[1] = _mi_heap_random_next(&_mi_heap_main);
mi_lock_init(&mi_subproc_default.abandoned_os_lock); mi_lock_init(&mi_subproc_default.abandoned_os_lock);
mi_lock_init(&mi_subproc_default.abandoned_os_visit_lock); mi_lock_init(&mi_subproc_default.abandoned_os_visit_lock);
_mi_heap_guarded_init(&_mi_heap_main);
} }
} }
@ -508,54 +555,15 @@ void _mi_heap_set_default_direct(mi_heap_t* heap) {
// -------------------------------------------------------- // --------------------------------------------------------
// Run functions on process init/done, and thread init/done // Run functions on process init/done, and thread init/done
// -------------------------------------------------------- // --------------------------------------------------------
static void mi_cdecl mi_process_done(void);
static bool os_preloading = true; // true until this module is initialized static bool os_preloading = true; // true until this module is initialized
static bool mi_redirected = false; // true if malloc redirects to mi_malloc
// Returns true if this module has not been initialized; Don't use C runtime routines until it returns false. // Returns true if this module has not been initialized; Don't use C runtime routines until it returns false.
bool mi_decl_noinline _mi_preloading(void) { bool mi_decl_noinline _mi_preloading(void) {
return os_preloading; return os_preloading;
} }
mi_decl_nodiscard bool mi_is_redirected(void) mi_attr_noexcept { // Called once by the process loader from `src/prim/prim.c`
return mi_redirected; void _mi_process_load(void) {
}
// Communicate with the redirection module on Windows
#if defined(_WIN32) && defined(MI_SHARED_LIB) && !defined(MI_WIN_NOREDIRECT)
#ifdef __cplusplus
extern "C" {
#endif
mi_decl_export void _mi_redirect_entry(DWORD reason) {
// called on redirection; careful as this may be called before DllMain
if (reason == DLL_PROCESS_ATTACH) {
mi_redirected = true;
}
else if (reason == DLL_PROCESS_DETACH) {
mi_redirected = false;
}
else if (reason == DLL_THREAD_DETACH) {
mi_thread_done();
}
}
__declspec(dllimport) bool mi_cdecl mi_allocator_init(const char** message);
__declspec(dllimport) void mi_cdecl mi_allocator_done(void);
#ifdef __cplusplus
}
#endif
#else
static bool mi_allocator_init(const char** message) {
if (message != NULL) *message = NULL;
return true;
}
static void mi_allocator_done(void) {
// nothing to do
}
#endif
// Called once by the process loader
static void mi_process_load(void) {
mi_heap_main_init(); mi_heap_main_init();
#if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD) #if defined(__APPLE__) || defined(MI_TLS_RECURSE_GUARD)
volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true; volatile mi_heap_t* dummy = _mi_heap_default; // access TLS to allocate it before setting tls_initialized to true;
@ -563,17 +571,14 @@ static void mi_process_load(void) {
#endif #endif
os_preloading = false; os_preloading = false;
mi_assert_internal(_mi_is_main_thread()); mi_assert_internal(_mi_is_main_thread());
#if !(defined(_WIN32) && defined(MI_SHARED_LIB)) // use Dll process detach (see below) instead of atexit (issue #521)
atexit(&mi_process_done);
#endif
_mi_options_init(); _mi_options_init();
mi_process_setup_auto_thread_done(); mi_process_setup_auto_thread_done();
mi_process_init(); mi_process_init();
if (mi_redirected) _mi_verbose_message("malloc is redirected.\n"); if (_mi_is_redirected()) _mi_verbose_message("malloc is redirected.\n");
// show message from the redirector (if present) // show message from the redirector (if present)
const char* msg = NULL; const char* msg = NULL;
mi_allocator_init(&msg); _mi_allocator_init(&msg);
if (msg != NULL && (mi_option_is_enabled(mi_option_verbose) || mi_option_is_enabled(mi_option_show_errors))) { if (msg != NULL && (mi_option_is_enabled(mi_option_verbose) || mi_option_is_enabled(mi_option_show_errors))) {
_mi_fputs(NULL,NULL,NULL,msg); _mi_fputs(NULL,NULL,NULL,msg);
} }
@ -594,7 +599,7 @@ static void mi_detect_cpu_features(void) {
} }
#else #else
static void mi_detect_cpu_features(void) { static void mi_detect_cpu_features(void) {
// nothing // nothing
} }
#endif #endif
@ -651,7 +656,7 @@ void mi_process_init(void) mi_attr_noexcept {
} }
// Called when the process is done (through `at_exit`) // Called when the process is done (through `at_exit`)
static void mi_cdecl mi_process_done(void) { void mi_cdecl _mi_process_done(void) {
// only shutdown if we were initialized // only shutdown if we were initialized
if (!_mi_process_is_initialized) return; if (!_mi_process_is_initialized) return;
// ensure we are called once // ensure we are called once
@ -683,64 +688,8 @@ static void mi_cdecl mi_process_done(void) {
if (mi_option_is_enabled(mi_option_show_stats) || mi_option_is_enabled(mi_option_verbose)) { if (mi_option_is_enabled(mi_option_show_stats) || mi_option_is_enabled(mi_option_verbose)) {
mi_stats_print(NULL); mi_stats_print(NULL);
} }
mi_allocator_done(); _mi_allocator_done();
_mi_verbose_message("process done: 0x%zx\n", _mi_heap_main.thread_id); _mi_verbose_message("process done: 0x%zx\n", _mi_heap_main.thread_id);
os_preloading = true; // don't call the C runtime anymore os_preloading = true; // don't call the C runtime anymore
} }
#if defined(_WIN32) && defined(MI_SHARED_LIB)
// Windows DLL: easy to hook into process_init and thread_done
__declspec(dllexport) BOOL WINAPI DllMain(HINSTANCE inst, DWORD reason, LPVOID reserved) {
MI_UNUSED(reserved);
MI_UNUSED(inst);
if (reason==DLL_PROCESS_ATTACH) {
mi_process_load();
}
else if (reason==DLL_PROCESS_DETACH) {
mi_process_done();
}
else if (reason==DLL_THREAD_DETACH) {
if (!mi_is_redirected()) {
mi_thread_done();
}
}
return TRUE;
}
#elif defined(_MSC_VER)
// MSVC: use data section magic for static libraries
// See <https://www.codeguru.com/cpp/misc/misc/applicationcontrol/article.php/c6945/Running-Code-Before-and-After-Main.htm>
static int _mi_process_init(void) {
mi_process_load();
return 0;
}
typedef int(*_mi_crt_callback_t)(void);
#if defined(_M_X64) || defined(_M_ARM64)
__pragma(comment(linker, "/include:" "_mi_msvc_initu"))
#pragma section(".CRT$XIU", long, read)
#else
__pragma(comment(linker, "/include:" "__mi_msvc_initu"))
#endif
#pragma data_seg(".CRT$XIU")
mi_decl_externc _mi_crt_callback_t _mi_msvc_initu[] = { &_mi_process_init };
#pragma data_seg()
#elif defined(__cplusplus)
// C++: use static initialization to detect process start
static bool _mi_process_init(void) {
mi_process_load();
return (_mi_heap_main.thread_id != 0);
}
static bool mi_initialized = _mi_process_init();
#elif defined(__GNUC__) || defined(__clang__)
// GCC,Clang: use the constructor attribute
static void __attribute__((constructor)) _mi_process_init(void) {
mi_process_load();
}
#else
#pragma message("define a way to call mi_process_load on your platform")
#endif

View file

@ -130,7 +130,7 @@ static void mi_out_alignright(char fill, char* start, size_t len, size_t extra,
} }
static void mi_out_num(uintptr_t x, size_t base, char prefix, char** out, char* end) static void mi_out_num(uintmax_t x, size_t base, char prefix, char** out, char* end)
{ {
if (x == 0 || base == 0 || base > 16) { if (x == 0 || base == 0 || base > 16) {
if (prefix != 0) { mi_outc(prefix, out, end); } if (prefix != 0) { mi_outc(prefix, out, end); }
@ -206,12 +206,13 @@ void _mi_vsnprintf(char* buf, size_t bufsize, const char* fmt, va_list args) {
} }
else if (c == 'p' || c == 'x' || c == 'u') { else if (c == 'p' || c == 'x' || c == 'u') {
// unsigned // unsigned
uintptr_t x = 0; uintmax_t x = 0;
if (c == 'x' || c == 'u') { if (c == 'x' || c == 'u') {
if (numtype == 'z') x = va_arg(args, size_t); if (numtype == 'z') x = va_arg(args, size_t);
else if (numtype == 't') x = va_arg(args, uintptr_t); // unsigned ptrdiff_t else if (numtype == 't') x = va_arg(args, uintptr_t); // unsigned ptrdiff_t
else if (numtype == 'L') x = (uintptr_t)va_arg(args, unsigned long long); else if (numtype == 'L') x = va_arg(args, unsigned long long);
else x = va_arg(args, unsigned long); else if (numtype == 'l') x = va_arg(args, unsigned long);
else x = va_arg(args, unsigned int);
} }
else if (c == 'p') { else if (c == 'p') {
x = va_arg(args, uintptr_t); x = va_arg(args, uintptr_t);
@ -228,20 +229,21 @@ void _mi_vsnprintf(char* buf, size_t bufsize, const char* fmt, va_list args) {
} }
else if (c == 'i' || c == 'd') { else if (c == 'i' || c == 'd') {
// signed // signed
intptr_t x = 0; intmax_t x = 0;
if (numtype == 'z') x = va_arg(args, intptr_t ); if (numtype == 'z') x = va_arg(args, intptr_t );
else if (numtype == 't') x = va_arg(args, ptrdiff_t); else if (numtype == 't') x = va_arg(args, ptrdiff_t);
else if (numtype == 'L') x = (intptr_t)va_arg(args, long long); else if (numtype == 'L') x = va_arg(args, long long);
else x = va_arg(args, long); else if (numtype == 'l') x = va_arg(args, long);
else x = va_arg(args, int);
char pre = 0; char pre = 0;
if (x < 0) { if (x < 0) {
pre = '-'; pre = '-';
if (x > INTPTR_MIN) { x = -x; } if (x > INTMAX_MIN) { x = -x; }
} }
else if (numplus != 0) { else if (numplus != 0) {
pre = numplus; pre = numplus;
} }
mi_out_num((uintptr_t)x, 10, pre, &out, end); mi_out_num((uintmax_t)x, 10, pre, &out, end);
} }
else if (c >= ' ' && c <= '~') { else if (c >= ' ' && c <= '~') {
// unknown format // unknown format

View file

@ -47,6 +47,49 @@ typedef struct mi_option_desc_s {
#define MI_OPTION(opt) mi_option_##opt, #opt, NULL #define MI_OPTION(opt) mi_option_##opt, #opt, NULL
#define MI_OPTION_LEGACY(opt,legacy) mi_option_##opt, #opt, #legacy #define MI_OPTION_LEGACY(opt,legacy) mi_option_##opt, #opt, #legacy
// Some options can be set at build time for statically linked libraries
// (use `-DMI_EXTRA_CPPDEFS="opt1=val1;opt2=val2"`)
//
// This is useful if we cannot pass them as environment variables
// (and setting them programmatically would be too late)
#ifndef MI_DEFAULT_VERBOSE
#define MI_DEFAULT_VERBOSE 0
#endif
#ifndef MI_DEFAULT_EAGER_COMMIT
#define MI_DEFAULT_EAGER_COMMIT 1
#endif
#ifndef MI_DEFAULT_ARENA_EAGER_COMMIT
#define MI_DEFAULT_ARENA_EAGER_COMMIT 2
#endif
#ifndef MI_DEFAULT_ARENA_RESERVE
#if (MI_INTPTR_SIZE>4)
#define MI_DEFAULT_ARENA_RESERVE 1024L*1024L
#else
#define MI_DEFAULT_ARENA_RESERVE 128L*1024L
#endif
#endif
#ifndef MI_DEFAULT_DISALLOW_ARENA_ALLOC
#define MI_DEFAULT_DISALLOW_ARENA_ALLOC 0
#endif
#ifndef MI_DEFAULT_ALLOW_LARGE_OS_PAGES
#define MI_DEFAULT_ALLOW_LARGE_OS_PAGES 0
#endif
#ifndef MI_DEFAULT_RESERVE_HUGE_OS_PAGES
#define MI_DEFAULT_RESERVE_HUGE_OS_PAGES 0
#endif
#ifndef MI_DEFAULT_RESERVE_OS_MEMORY
#define MI_DEFAULT_RESERVE_OS_MEMORY 0
#endif
static mi_option_desc_t options[_mi_option_last] = static mi_option_desc_t options[_mi_option_last] =
{ {
// stable options // stable options
@ -56,16 +99,21 @@ static mi_option_desc_t options[_mi_option_last] =
{ 0, UNINIT, MI_OPTION(show_errors) }, { 0, UNINIT, MI_OPTION(show_errors) },
#endif #endif
{ 0, UNINIT, MI_OPTION(show_stats) }, { 0, UNINIT, MI_OPTION(show_stats) },
{ 0, UNINIT, MI_OPTION(verbose) }, { MI_DEFAULT_VERBOSE, UNINIT, MI_OPTION(verbose) },
// the following options are experimental and not all combinations make sense. // some of the following options are experimental and not all combinations are allowed.
{ 1, UNINIT, MI_OPTION(eager_commit) }, // commit per segment directly (4MiB) (but see also `eager_commit_delay`) { MI_DEFAULT_EAGER_COMMIT,
{ 2, UNINIT, MI_OPTION_LEGACY(arena_eager_commit,eager_region_commit) }, // eager commit arena's? 2 is used to enable this only on an OS that has overcommit (i.e. linux) UNINIT, MI_OPTION(eager_commit) }, // commit per segment directly (4MiB) (but see also `eager_commit_delay`)
{ MI_DEFAULT_ARENA_EAGER_COMMIT,
UNINIT, MI_OPTION_LEGACY(arena_eager_commit,eager_region_commit) }, // eager commit arena's? 2 is used to enable this only on an OS that has overcommit (i.e. linux)
{ 1, UNINIT, MI_OPTION_LEGACY(purge_decommits,reset_decommits) }, // purge decommits memory (instead of reset) (note: on linux this uses MADV_DONTNEED for decommit) { 1, UNINIT, MI_OPTION_LEGACY(purge_decommits,reset_decommits) }, // purge decommits memory (instead of reset) (note: on linux this uses MADV_DONTNEED for decommit)
{ 0, UNINIT, MI_OPTION_LEGACY(allow_large_os_pages,large_os_pages) }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's { MI_DEFAULT_ALLOW_LARGE_OS_PAGES,
{ 0, UNINIT, MI_OPTION(reserve_huge_os_pages) }, // per 1GiB huge pages UNINIT, MI_OPTION_LEGACY(allow_large_os_pages,large_os_pages) }, // use large OS pages, use only with eager commit to prevent fragmentation of VMA's
{ MI_DEFAULT_RESERVE_HUGE_OS_PAGES,
UNINIT, MI_OPTION(reserve_huge_os_pages) }, // per 1GiB huge pages
{-1, UNINIT, MI_OPTION(reserve_huge_os_pages_at) }, // reserve huge pages at node N {-1, UNINIT, MI_OPTION(reserve_huge_os_pages_at) }, // reserve huge pages at node N
{ 0, UNINIT, MI_OPTION(reserve_os_memory) }, // reserve N KiB OS memory in advance (use `option_get_size`) { MI_DEFAULT_RESERVE_OS_MEMORY,
UNINIT, MI_OPTION(reserve_os_memory) }, // reserve N KiB OS memory in advance (use `option_get_size`)
{ 0, UNINIT, MI_OPTION(deprecated_segment_cache) }, // cache N segments per thread { 0, UNINIT, MI_OPTION(deprecated_segment_cache) }, // cache N segments per thread
{ 0, UNINIT, MI_OPTION(deprecated_page_reset) }, // reset page memory on free { 0, UNINIT, MI_OPTION(deprecated_page_reset) }, // reset page memory on free
{ 0, UNINIT, MI_OPTION(abandoned_page_purge) }, // purge free page memory when a thread terminates { 0, UNINIT, MI_OPTION(abandoned_page_purge) }, // purge free page memory when a thread terminates
@ -83,24 +131,26 @@ static mi_option_desc_t options[_mi_option_last] =
{ 32, UNINIT, MI_OPTION(max_warnings) }, // maximum warnings that are output { 32, UNINIT, MI_OPTION(max_warnings) }, // maximum warnings that are output
{ 10, UNINIT, MI_OPTION(max_segment_reclaim)}, // max. percentage of the abandoned segments to be reclaimed per try. { 10, UNINIT, MI_OPTION(max_segment_reclaim)}, // max. percentage of the abandoned segments to be reclaimed per try.
{ 0, UNINIT, MI_OPTION(destroy_on_exit)}, // release all OS memory on process exit; careful with dangling pointer or after-exit frees! { 0, UNINIT, MI_OPTION(destroy_on_exit)}, // release all OS memory on process exit; careful with dangling pointer or after-exit frees!
#if (MI_INTPTR_SIZE>4) { MI_DEFAULT_ARENA_RESERVE, UNINIT, MI_OPTION(arena_reserve) }, // reserve memory N KiB at a time (=1GiB) (use `option_get_size`)
{ 1024L*1024L, UNINIT, MI_OPTION(arena_reserve) }, // reserve memory N KiB at a time (=1GiB) (use `option_get_size`)
#else
{ 128L*1024L, UNINIT, MI_OPTION(arena_reserve) }, // =128MiB on 32-bit
#endif
{ 10, UNINIT, MI_OPTION(arena_purge_mult) }, // purge delay multiplier for arena's { 10, UNINIT, MI_OPTION(arena_purge_mult) }, // purge delay multiplier for arena's
{ 1, UNINIT, MI_OPTION_LEGACY(purge_extend_delay, decommit_extend_delay) }, { 1, UNINIT, MI_OPTION_LEGACY(purge_extend_delay, decommit_extend_delay) },
{ 1, UNINIT, MI_OPTION(abandoned_reclaim_on_free) },// reclaim an abandoned segment on a free { 1, UNINIT, MI_OPTION(abandoned_reclaim_on_free) },// reclaim an abandoned segment on a free
{ 0, UNINIT, MI_OPTION(disallow_arena_alloc) }, // 1 = do not use arena's for allocation (except if using specific arena id's) { MI_DEFAULT_DISALLOW_ARENA_ALLOC, UNINIT, MI_OPTION(disallow_arena_alloc) }, // 1 = do not use arena's for allocation (except if using specific arena id's)
{ 400, UNINIT, MI_OPTION(retry_on_oom) }, // windows only: retry on out-of-memory for N milli seconds (=400), set to 0 to disable retries. { 400, UNINIT, MI_OPTION(retry_on_oom) }, // windows only: retry on out-of-memory for N milli seconds (=400), set to 0 to disable retries.
#if defined(MI_VISIT_ABANDONED) #if defined(MI_VISIT_ABANDONED)
{ 1, INITIALIZED, MI_OPTION(visit_abandoned) }, // allow visiting heap blocks in abandonded segments; requires taking locks during reclaim. { 1, INITIALIZED, MI_OPTION(visit_abandoned) }, // allow visiting heap blocks in abandonded segments; requires taking locks during reclaim.
#else #else
{ 0, UNINIT, MI_OPTION(visit_abandoned) }, { 0, UNINIT, MI_OPTION(visit_abandoned) },
#endif #endif
{ 0, UNINIT, MI_OPTION(debug_guarded_min) }, // only used when building with MI_DEBUG_GUARDED: minimal rounded object size for guarded objects { 0, UNINIT, MI_OPTION(guarded_min) }, // only used when building with MI_GUARDED: minimal rounded object size for guarded objects
{ 0, UNINIT, MI_OPTION(debug_guarded_max) }, // only used when building with MI_DEBUG_GUARDED: maximal rounded object size for guarded objects { MI_GiB, UNINIT, MI_OPTION(guarded_max) }, // only used when building with MI_GUARDED: maximal rounded object size for guarded objects
{ 0, UNINIT, MI_OPTION(guarded_precise) }, // disregard minimal alignment requirement to always place guarded blocks exactly in front of a guard page (=0)
#if MI_GUARDED
{ 4000,UNINIT, MI_OPTION(guarded_sample_rate)}, // 1 out of N allocations in the min/max range will be guarded(= 1000)
#else
{ 0, UNINIT, MI_OPTION(guarded_sample_rate)},
#endif
{ 0, UNINIT, MI_OPTION(guarded_sample_seed)},
}; };
static void mi_option_init(mi_option_desc_t* desc); static void mi_option_init(mi_option_desc_t* desc);
@ -123,25 +173,25 @@ void _mi_options_init(void) {
} }
mi_max_error_count = mi_option_get(mi_option_max_errors); mi_max_error_count = mi_option_get(mi_option_max_errors);
mi_max_warning_count = mi_option_get(mi_option_max_warnings); mi_max_warning_count = mi_option_get(mi_option_max_warnings);
#if MI_DEBUG_GUARDED #if MI_GUARDED
if (mi_option_get(mi_option_debug_guarded_max) > 0) { if (mi_option_get(mi_option_guarded_sample_rate) > 0) {
if (mi_option_is_enabled(mi_option_allow_large_os_pages)) { if (mi_option_is_enabled(mi_option_allow_large_os_pages)) {
mi_option_disable(mi_option_allow_large_os_pages); mi_option_disable(mi_option_allow_large_os_pages);
_mi_warning_message("option 'allow_large_os_pages' is disabled to allow for guarded objects\n"); _mi_warning_message("option 'allow_large_os_pages' is disabled to allow for guarded objects\n");
} }
} }
_mi_verbose_message("guarded build: %s\n", mi_option_get(mi_option_debug_guarded_max) > 0 ? "enabled" : "disabled"); _mi_verbose_message("guarded build: %s\n", mi_option_get(mi_option_guarded_max) > 0 ? "enabled" : "disabled");
#endif #endif
} }
long _mi_option_get_fast(mi_option_t option) { long _mi_option_get_fast(mi_option_t option) {
mi_assert(option >= 0 && option < _mi_option_last); mi_assert(option >= 0 && option < _mi_option_last);
mi_option_desc_t* desc = &options[option]; mi_option_desc_t* desc = &options[option];
mi_assert(desc->option == option); // index should match the option mi_assert(desc->option == option); // index should match the option
//mi_assert(desc->init != UNINIT); //mi_assert(desc->init != UNINIT);
return desc->value; return desc->value;
} }
mi_decl_nodiscard long mi_option_get(mi_option_t option) { mi_decl_nodiscard long mi_option_get(mi_option_t option) {
mi_assert(option >= 0 && option < _mi_option_last); mi_assert(option >= 0 && option < _mi_option_last);
@ -160,7 +210,6 @@ mi_decl_nodiscard long mi_option_get_clamp(mi_option_t option, long min, long ma
} }
mi_decl_nodiscard size_t mi_option_get_size(mi_option_t option) { mi_decl_nodiscard size_t mi_option_get_size(mi_option_t option) {
mi_assert_internal(mi_option_has_size_in_kib(option));
const long x = mi_option_get(option); const long x = mi_option_get(option);
size_t size = (x < 0 ? 0 : (size_t)x); size_t size = (x < 0 ? 0 : (size_t)x);
if (mi_option_has_size_in_kib(option)) { if (mi_option_has_size_in_kib(option)) {
@ -177,11 +226,11 @@ void mi_option_set(mi_option_t option, long value) {
desc->value = value; desc->value = value;
desc->init = INITIALIZED; desc->init = INITIALIZED;
// ensure min/max range; be careful to not recurse. // ensure min/max range; be careful to not recurse.
if (desc->option == mi_option_debug_guarded_min && _mi_option_get_fast(mi_option_debug_guarded_max) < value) { if (desc->option == mi_option_guarded_min && _mi_option_get_fast(mi_option_guarded_max) < value) {
mi_option_set(mi_option_debug_guarded_max, value); mi_option_set(mi_option_guarded_max, value);
} }
else if (desc->option == mi_option_debug_guarded_max && _mi_option_get_fast(mi_option_debug_guarded_min) > value) { else if (desc->option == mi_option_guarded_max && _mi_option_get_fast(mi_option_guarded_min) > value) {
mi_option_set(mi_option_debug_guarded_min, value); mi_option_set(mi_option_guarded_min, value);
} }
} }
@ -517,7 +566,7 @@ static void mi_option_init(mi_option_desc_t* desc) {
char* end = buf; char* end = buf;
long value = strtol(buf, &end, 10); long value = strtol(buf, &end, 10);
if (mi_option_has_size_in_kib(desc->option)) { if (mi_option_has_size_in_kib(desc->option)) {
// this option is interpreted in KiB to prevent overflow of `long` for large allocations // this option is interpreted in KiB to prevent overflow of `long` for large allocations
// (long is 32-bit on 64-bit windows, which allows for 4TiB max.) // (long is 32-bit on 64-bit windows, which allows for 4TiB max.)
size_t size = (value < 0 ? 0 : (size_t)value); size_t size = (value < 0 ? 0 : (size_t)value);
bool overflow = false; bool overflow = false;
@ -532,7 +581,7 @@ static void mi_option_init(mi_option_desc_t* desc) {
value = (size > LONG_MAX ? LONG_MAX : (long)size); value = (size > LONG_MAX ? LONG_MAX : (long)size);
} }
if (*end == 0) { if (*end == 0) {
mi_option_set(desc->option, value); mi_option_set(desc->option, value);
} }
else { else {
// set `init` first to avoid recursion through _mi_warning_message on mimalloc_verbose. // set `init` first to avoid recursion through _mi_warning_message on mimalloc_verbose.

View file

@ -11,16 +11,33 @@ terms of the MIT license. A copy of the license can be found in the file
/* ----------------------------------------------------------- /* -----------------------------------------------------------
Initialization. Initialization.
----------------------------------------------------------- */ ----------------------------------------------------------- */
#ifndef MI_DEFAULT_VIRTUAL_ADDRESS_BITS
#if MI_INTPTR_SIZE < 8
#define MI_DEFAULT_VIRTUAL_ADDRESS_BITS 32
#else
#define MI_DEFAULT_VIRTUAL_ADDRESS_BITS 48
#endif
#endif
#ifndef MI_DEFAULT_PHYSICAL_MEMORY
#if MI_INTPTR_SIZE < 8
#define MI_DEFAULT_PHYSICAL_MEMORY 4*MI_GiB
#else
#define MI_DEFAULT_PHYSICAL_MEMORY 32*MI_GiB
#endif
#endif
static mi_os_mem_config_t mi_os_mem_config = { static mi_os_mem_config_t mi_os_mem_config = {
4096, // page size 4096, // page size
0, // large page size (usually 2MiB) 0, // large page size (usually 2MiB)
4096, // allocation granularity 4096, // allocation granularity
true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems) MI_DEFAULT_PHYSICAL_MEMORY,
false, // can we partially free allocated blocks? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span) MI_DEFAULT_VIRTUAL_ADDRESS_BITS,
true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory) true, // has overcommit? (if true we use MAP_NORESERVE on mmap systems)
false, // can we partially free allocated blocks? (on mmap systems we can free anywhere in a mapped range, but on Windows we must free the entire span)
true // has virtual reserve? (if true we can reserve virtual address space without using commit or physical memory)
}; };
bool _mi_os_has_overcommit(void) { bool _mi_os_has_overcommit(void) {
@ -91,9 +108,10 @@ static void* mi_align_down_ptr(void* p, size_t alignment) {
aligned hinting aligned hinting
-------------------------------------------------------------- */ -------------------------------------------------------------- */
// On 64-bit systems, we can do efficient aligned allocation by using // On systems with enough virtual address bits, we can do efficient aligned allocation by using
// the 2TiB to 30TiB area to allocate those. // the 2TiB to 30TiB area to allocate those. If we have at least 46 bits of virtual address
#if (MI_INTPTR_SIZE >= 8) // space (64TiB) we use this technique. (but see issue #939)
#if (MI_INTPTR_SIZE >= 8) && !defined(MI_NO_ALIGNED_HINT)
static mi_decl_cache_align _Atomic(uintptr_t)aligned_base; static mi_decl_cache_align _Atomic(uintptr_t)aligned_base;
// Return a MI_SEGMENT_SIZE aligned address that is probably available. // Return a MI_SEGMENT_SIZE aligned address that is probably available.
@ -110,6 +128,7 @@ static mi_decl_cache_align _Atomic(uintptr_t)aligned_base;
void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size) void* _mi_os_get_aligned_hint(size_t try_alignment, size_t size)
{ {
if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL; if (try_alignment <= 1 || try_alignment > MI_SEGMENT_SIZE) return NULL;
if (mi_os_mem_config.virtual_address_bits < 46) return NULL; // < 64TiB virtual address space
size = _mi_align_up(size, MI_SEGMENT_SIZE); size = _mi_align_up(size, MI_SEGMENT_SIZE);
if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096. if (size > 1*MI_GiB) return NULL; // guarantee the chance of fixed valid address is at most 1/(MI_HINT_AREA / 1<<30) = 1/4096.
#if (MI_SECURE>0) #if (MI_SECURE>0)
@ -195,7 +214,8 @@ void _mi_os_free(void* p, size_t size, mi_memid_t memid, mi_stats_t* stats) {
-------------------------------------------------------------- */ -------------------------------------------------------------- */
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. // Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* tld_stats) { // Also `hint_addr` is a hint and may be ignored.
static void* mi_os_prim_alloc_at(void* hint_addr, size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* tld_stats) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(is_zero != NULL); mi_assert_internal(is_zero != NULL);
mi_assert_internal(is_large != NULL); mi_assert_internal(is_large != NULL);
@ -204,9 +224,9 @@ static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bo
if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning
*is_zero = false; *is_zero = false;
void* p = NULL; void* p = NULL;
int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p); int err = _mi_prim_alloc(hint_addr, size, try_alignment, commit, allow_large, is_large, is_zero, &p);
if (err != 0) { if (err != 0) {
_mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large); _mi_warning_message("unable to allocate OS memory (error: %d (0x%x), addr: %p, size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, hint_addr, size, try_alignment, commit, allow_large);
} }
MI_UNUSED(tld_stats); MI_UNUSED(tld_stats);
@ -226,6 +246,10 @@ static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bo
return p; return p;
} }
static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, mi_stats_t* tld_stats) {
return mi_os_prim_alloc_at(NULL, size, try_alignment, commit, allow_large, is_large, is_zero, tld_stats);
}
// Primitive aligned allocation from the OS. // Primitive aligned allocation from the OS.
// This function guarantees the allocated memory is aligned. // This function guarantees the allocated memory is aligned.
@ -239,7 +263,7 @@ static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit
if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL; if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
size = _mi_align_up(size, _mi_os_page_size()); size = _mi_align_up(size, _mi_os_page_size());
// try first with a hint (this will be aligned directly on Win 10+ or BSD) // try first with a requested alignment hint (this will usually be aligned directly on Win 10+ or BSD)
void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats); void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats);
if (p == NULL) return NULL; if (p == NULL) return NULL;
@ -249,7 +273,9 @@ static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit
} }
else { else {
// if not aligned, free it, overallocate, and unmap around it // if not aligned, free it, overallocate, and unmap around it
#if !MI_TRACK_ASAN
_mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit); _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit);
#endif
mi_os_prim_free(p, size, commit, stats); mi_os_prim_free(p, size, commit, stats);
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
const size_t over_size = size + alignment; const size_t over_size = size + alignment;
@ -275,7 +301,7 @@ static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit
p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats); p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats);
if (p == NULL) return NULL; if (p == NULL) return NULL;
// and selectively unmap parts around the over-allocated area. // and selectively unmap parts around the over-allocated area.
void* aligned_p = mi_align_up_ptr(p, alignment); void* aligned_p = mi_align_up_ptr(p, alignment);
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p; size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
size_t mid_size = _mi_align_up(size, _mi_os_page_size()); size_t mid_size = _mi_align_up(size, _mi_os_page_size());

View file

@ -414,9 +414,6 @@ void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) {
// no more aligned blocks in here // no more aligned blocks in here
mi_page_set_has_aligned(page, false); mi_page_set_has_aligned(page, false);
#if MI_DEBUG_GUARDED
mi_page_set_has_guarded(page, false);
#endif
// remove from the page list // remove from the page list
// (no need to do _mi_heap_delayed_free first as all blocks are already free) // (no need to do _mi_heap_delayed_free first as all blocks are already free)
@ -443,9 +440,6 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
mi_assert_internal(mi_page_all_free(page)); mi_assert_internal(mi_page_all_free(page));
mi_page_set_has_aligned(page, false); mi_page_set_has_aligned(page, false);
#if MI_DEBUG_GUARDED
mi_page_set_has_guarded(page, false);
#endif
// don't retire too often.. // don't retire too often..
// (or we end up retiring and re-allocating most of the time) // (or we end up retiring and re-allocating most of the time)

View file

@ -71,8 +71,8 @@ int _mi_prim_free(void* addr, size_t size) {
extern void* emmalloc_memalign(size_t alignment, size_t size); extern void* emmalloc_memalign(size_t alignment, size_t size);
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. // Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { int _mi_prim_alloc(void* hint_addr, size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
MI_UNUSED(try_alignment); MI_UNUSED(allow_large); MI_UNUSED(commit); MI_UNUSED(try_alignment); MI_UNUSED(allow_large); MI_UNUSED(commit); MI_UNUSED(hint_addr);
*is_large = false; *is_large = false;
// TODO: Track the highest address ever seen; first uses of it are zeroes. // TODO: Track the highest address ever seen; first uses of it are zeroes.
// That assumes no one else uses sbrk but us (they could go up, // That assumes no one else uses sbrk but us (they could go up,

View file

@ -418,9 +418,9 @@ static inline malloc_zone_t* mi_get_default_zone(void)
} }
#if defined(__clang__) #if defined(__clang__)
__attribute__((constructor(0))) __attribute__((constructor(101))) // highest priority
#else #else
__attribute__((constructor)) // seems not supported by g++-11 on the M1 __attribute__((constructor)) // priority level is not supported by gcc
#endif #endif
__attribute__((used)) __attribute__((used))
static void _mi_macos_override_malloc(void) { static void _mi_macos_override_malloc(void) {

View file

@ -25,3 +25,52 @@ terms of the MIT license. A copy of the license can be found in the file
#include "unix/prim.c" // mmap() (Linux, macOSX, BSD, Illumnos, Haiku, DragonFly, etc.) #include "unix/prim.c" // mmap() (Linux, macOSX, BSD, Illumnos, Haiku, DragonFly, etc.)
#endif #endif
// Generic process initialization
#ifndef MI_PRIM_HAS_PROCESS_ATTACH
#if defined(__GNUC__) || defined(__clang__)
// gcc,clang: use the constructor/destructor attribute
// which for both seem to run before regular constructors/destructors
#if defined(__clang__)
#define mi_attr_constructor __attribute__((constructor(101)))
#define mi_attr_destructor __attribute__((destructor(101)))
#else
#define mi_attr_constructor __attribute__((constructor))
#define mi_attr_destructor __attribute__((destructor))
#endif
static void mi_attr_constructor mi_process_attach(void) {
_mi_process_load();
}
static void mi_attr_destructor mi_process_detach(void) {
_mi_process_done();
}
#elif defined(__cplusplus)
// C++: use static initialization to detect process start/end
// This is not guaranteed to be first/last but the best we can generally do?
struct mi_init_done_t {
mi_init_done_t() {
_mi_process_load();
}
~mi_init_done_t() {
_mi_process_done();
}
};
static mi_init_done_t mi_init_done;
#else
#pragma message("define a way to call _mi_process_load/done on your platform")
#endif
#endif
// Generic allocator init/done callback
#ifndef MI_PRIM_HAS_ALLOCATOR_INIT
bool _mi_is_redirected(void) {
return false;
}
bool _mi_allocator_init(const char** message) {
if (message != NULL) { *message = NULL; }
return true;
}
void _mi_allocator_done(void) {
// nothing to do
}
#endif

View file

@ -139,6 +139,12 @@ void _mi_prim_mem_init( mi_os_mem_config_t* config )
if (psize > 0) { if (psize > 0) {
config->page_size = (size_t)psize; config->page_size = (size_t)psize;
config->alloc_granularity = (size_t)psize; config->alloc_granularity = (size_t)psize;
#if defined(_SC_PHYS_PAGES)
long pphys = sysconf(_SC_PHYS_PAGES);
if (pphys > 0 && (size_t)pphys < (SIZE_MAX/(size_t)psize)) {
config->physical_memory = (size_t)pphys * (size_t)psize;
}
#endif
} }
config->large_page_size = 2*MI_MiB; // TODO: can we query the OS for this? config->large_page_size = 2*MI_MiB; // TODO: can we query the OS for this?
config->has_overcommit = unix_detect_overcommit(); config->has_overcommit = unix_detect_overcommit();
@ -351,14 +357,14 @@ static void* unix_mmap(void* addr, size_t size, size_t try_alignment, int protec
} }
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. // Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { int _mi_prim_alloc(void* hint_addr, size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(commit || !allow_large); mi_assert_internal(commit || !allow_large);
mi_assert_internal(try_alignment > 0); mi_assert_internal(try_alignment > 0);
*is_zero = true; *is_zero = true;
int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE); int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE);
*addr = unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large); *addr = unix_mmap(hint_addr, size, try_alignment, protect_flags, false, allow_large, is_large);
return (*addr != NULL ? 0 : errno); return (*addr != NULL ? 0 : errno);
} }

View file

@ -119,8 +119,8 @@ static void* mi_prim_mem_grow(size_t size, size_t try_alignment) {
} }
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned. // Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { int _mi_prim_alloc(void* hint_addr, size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
MI_UNUSED(allow_large); MI_UNUSED(commit); MI_UNUSED(allow_large); MI_UNUSED(commit); MI_UNUSED(hint_addr);
*is_large = false; *is_large = false;
*is_zero = false; *is_zero = false;
*addr = mi_prim_mem_grow(size, try_alignment); *addr = mi_prim_mem_grow(size, try_alignment);

View file

@ -118,6 +118,18 @@ void _mi_prim_mem_init( mi_os_mem_config_t* config )
GetSystemInfo(&si); GetSystemInfo(&si);
if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; } if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; }
if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; } if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; }
// get virtual address bits
if ((uintptr_t)si.lpMaximumApplicationAddress > 0) {
const size_t vbits = MI_INTPTR_BITS - mi_clz((uintptr_t)si.lpMaximumApplicationAddress);
config->virtual_address_bits = vbits;
}
// get physical memory
ULONGLONG memInKiB = 0;
if (GetPhysicallyInstalledSystemMemory(&memInKiB)) {
if (memInKiB > 0 && memInKiB < (SIZE_MAX / MI_KiB)) {
config->physical_memory = memInKiB * MI_KiB;
}
}
// get the VirtualAlloc2 function // get the VirtualAlloc2 function
HINSTANCE hDll; HINSTANCE hDll;
hDll = LoadLibrary(TEXT("kernelbase.dll")); hDll = LoadLibrary(TEXT("kernelbase.dll"));
@ -191,7 +203,7 @@ static void* win_virtual_alloc_prim_once(void* addr, size_t size, size_t try_ali
} }
#endif #endif
// on modern Windows try use VirtualAlloc2 for aligned allocation // on modern Windows try use VirtualAlloc2 for aligned allocation
if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) { if (addr == NULL && try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 }; MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 };
reqs.Alignment = try_alignment; reqs.Alignment = try_alignment;
MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} }; MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} };
@ -279,14 +291,14 @@ static void* win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DW
return p; return p;
} }
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) { int _mi_prim_alloc(void* hint_addr, size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0); mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(commit || !allow_large); mi_assert_internal(commit || !allow_large);
mi_assert_internal(try_alignment > 0); mi_assert_internal(try_alignment > 0);
*is_zero = true; *is_zero = true;
int flags = MEM_RESERVE; int flags = MEM_RESERVE;
if (commit) { flags |= MEM_COMMIT; } if (commit) { flags |= MEM_COMMIT; }
*addr = win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large); *addr = win_virtual_alloc(hint_addr, size, try_alignment, flags, false, allow_large, is_large);
return (*addr != NULL ? 0 : (int)GetLastError()); return (*addr != NULL ? 0 : (int)GetLastError());
} }
@ -499,8 +511,7 @@ void _mi_prim_process_info(mi_process_info_t* pinfo)
} }
// get process info // get process info
PROCESS_MEMORY_COUNTERS info; PROCESS_MEMORY_COUNTERS info; _mi_memzero_var(info);
memset(&info, 0, sizeof(info));
if (pGetProcessMemoryInfo != NULL) { if (pGetProcessMemoryInfo != NULL) {
pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info)); pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info));
} }
@ -602,60 +613,195 @@ bool _mi_prim_random_buf(void* buf, size_t buf_len) {
#endif // MI_USE_RTLGENRANDOM #endif // MI_USE_RTLGENRANDOM
//---------------------------------------------------------------- //----------------------------------------------------------------
// Thread init/done // Process & Thread Init/Done
//---------------------------------------------------------------- //----------------------------------------------------------------
#if !defined(MI_SHARED_LIB) static void NTAPI mi_win_main(PVOID module, DWORD reason, LPVOID reserved) {
MI_UNUSED(reserved);
// use thread local storage keys to detect thread ending MI_UNUSED(module);
// note: another design could be to use special linker sections (see issue #869) if (reason==DLL_PROCESS_ATTACH) {
#include <fibersapi.h> _mi_process_load();
#if (_WIN32_WINNT < 0x600) // before Windows Vista }
WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback ); else if (reason==DLL_PROCESS_DETACH) {
WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex ); _mi_process_done();
WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData ); }
WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex); else if (reason==DLL_THREAD_DETACH && !_mi_is_redirected()) {
#endif _mi_thread_done(NULL);
static DWORD mi_fls_key = (DWORD)(-1);
static void NTAPI mi_fls_done(PVOID value) {
mi_heap_t* heap = (mi_heap_t*)value;
if (heap != NULL) {
_mi_thread_done(heap);
FlsSetValue(mi_fls_key, NULL); // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672
} }
} }
void _mi_prim_thread_init_auto_done(void) {
mi_fls_key = FlsAlloc(&mi_fls_done);
}
void _mi_prim_thread_done_auto_done(void) { #if defined(MI_SHARED_LIB)
// call thread-done on all threads (except the main thread) to prevent #define MI_PRIM_HAS_PROCESS_ATTACH 1
// dangling callback pointer if statically linked with a DLL; Issue #208
FlsFree(mi_fls_key);
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { // Windows DLL: easy to hook into process_init and thread_done
mi_assert_internal(mi_fls_key != (DWORD)(-1)); __declspec(dllexport) BOOL WINAPI DllMain(HINSTANCE inst, DWORD reason, LPVOID reserved) {
FlsSetValue(mi_fls_key, heap); mi_win_main((PVOID)inst,reason,reserved);
} return TRUE;
}
#else // nothing to do since `_mi_thread_done` is handled through the DLL_THREAD_DETACH event.
void _mi_prim_thread_init_auto_done(void) { }
void _mi_prim_thread_done_auto_done(void) { }
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}
// Dll; nothing to do as in that case thread_done is handled through the DLL_THREAD_DETACH event. #elif !defined(MI_WIN_USE_FLS)
#define MI_PRIM_HAS_PROCESS_ATTACH 1
void _mi_prim_thread_init_auto_done(void) { static void NTAPI mi_win_main_attach(PVOID module, DWORD reason, LPVOID reserved) {
} if (reason == DLL_PROCESS_ATTACH || reason == DLL_THREAD_ATTACH) {
mi_win_main(module, reason, reserved);
}
}
static void NTAPI mi_win_main_detach(PVOID module, DWORD reason, LPVOID reserved) {
if (reason == DLL_PROCESS_DETACH || reason == DLL_THREAD_DETACH) {
mi_win_main(module, reason, reserved);
}
}
void _mi_prim_thread_done_auto_done(void) { // Set up TLS callbacks in a statically linked library by using special data sections.
} // See <https://stackoverflow.com/questions/14538159/tls-callback-in-windows>
// We use 2 entries to ensure we call attach events before constructors
// are called, and detach events after destructors are called.
#if defined(__cplusplus)
extern "C" {
#endif
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) { #if defined(_WIN64)
MI_UNUSED(heap); #pragma comment(linker, "/INCLUDE:_tls_used")
} #pragma comment(linker, "/INCLUDE:_mi_tls_callback_pre")
#pragma comment(linker, "/INCLUDE:_mi_tls_callback_post")
#pragma const_seg(".CRT$XLB")
extern const PIMAGE_TLS_CALLBACK _mi_tls_callback_pre[];
const PIMAGE_TLS_CALLBACK _mi_tls_callback_pre[] = { &mi_win_main_attach };
#pragma const_seg()
#pragma const_seg(".CRT$XLY")
extern const PIMAGE_TLS_CALLBACK _mi_tls_callback_post[];
const PIMAGE_TLS_CALLBACK _mi_tls_callback_post[] = { &mi_win_main_detach };
#pragma const_seg()
#else
#pragma comment(linker, "/INCLUDE:__tls_used")
#pragma comment(linker, "/INCLUDE:__mi_tls_callback_pre")
#pragma comment(linker, "/INCLUDE:__mi_tls_callback_post")
#pragma data_seg(".CRT$XLB")
PIMAGE_TLS_CALLBACK _mi_tls_callback_pre[] = { &mi_win_main_attach };
#pragma data_seg()
#pragma data_seg(".CRT$XLY")
PIMAGE_TLS_CALLBACK _mi_tls_callback_post[] = { &mi_win_main_detach };
#pragma data_seg()
#endif
#if defined(__cplusplus)
}
#endif
// nothing to do since `_mi_thread_done` is handled through the DLL_THREAD_DETACH event.
void _mi_prim_thread_init_auto_done(void) { }
void _mi_prim_thread_done_auto_done(void) { }
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}
#else // deprecated: statically linked, use fiber api
#if defined(_MSC_VER) // on clang/gcc use the constructor attribute (in `src/prim/prim.c`)
// MSVC: use data section magic for static libraries
// See <https://www.codeguru.com/cpp/misc/misc/applicationcontrol/article.php/c6945/Running-Code-Before-and-After-Main.htm>
#define MI_PRIM_HAS_PROCESS_ATTACH 1
static int mi_process_attach(void) {
mi_win_main(NULL,DLL_PROCESS_ATTACH,NULL);
atexit(&_mi_process_done);
return 0;
}
typedef int(*mi_crt_callback_t)(void);
#if defined(_WIN64)
#pragma comment(linker, "/INCLUDE:_mi_tls_callback")
#pragma section(".CRT$XIU", long, read)
#else
#pragma comment(linker, "/INCLUDE:__mi_tls_callback")
#endif
#pragma data_seg(".CRT$XIU")
mi_decl_externc mi_crt_callback_t _mi_tls_callback[] = { &mi_process_attach };
#pragma data_seg()
#endif
// use the fiber api for calling `_mi_thread_done`.
#include <fibersapi.h>
#if (_WIN32_WINNT < 0x600) // before Windows Vista
WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback );
WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex );
WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData );
WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex);
#endif
static DWORD mi_fls_key = (DWORD)(-1);
static void NTAPI mi_fls_done(PVOID value) {
mi_heap_t* heap = (mi_heap_t*)value;
if (heap != NULL) {
_mi_thread_done(heap);
FlsSetValue(mi_fls_key, NULL); // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672
}
}
void _mi_prim_thread_init_auto_done(void) {
mi_fls_key = FlsAlloc(&mi_fls_done);
}
void _mi_prim_thread_done_auto_done(void) {
// call thread-done on all threads (except the main thread) to prevent
// dangling callback pointer if statically linked with a DLL; Issue #208
FlsFree(mi_fls_key);
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
mi_assert_internal(mi_fls_key != (DWORD)(-1));
FlsSetValue(mi_fls_key, heap);
}
#endif #endif
// ----------------------------------------------------
// Communicate with the redirection module on Windows
// ----------------------------------------------------
#if defined(MI_SHARED_LIB) && !defined(MI_WIN_NOREDIRECT)
#define MI_PRIM_HAS_ALLOCATOR_INIT 1
static bool mi_redirected = false; // true if malloc redirects to mi_malloc
bool _mi_is_redirected(void) {
return mi_redirected;
}
#ifdef __cplusplus
extern "C" {
#endif
mi_decl_export void _mi_redirect_entry(DWORD reason) {
// called on redirection; careful as this may be called before DllMain
if (reason == DLL_PROCESS_ATTACH) {
mi_redirected = true;
}
else if (reason == DLL_PROCESS_DETACH) {
mi_redirected = false;
}
else if (reason == DLL_THREAD_DETACH) {
_mi_thread_done(NULL);
}
}
__declspec(dllimport) bool mi_cdecl mi_allocator_init(const char** message);
__declspec(dllimport) void mi_cdecl mi_allocator_done(void);
#ifdef __cplusplus
}
#endif
bool _mi_allocator_init(const char** message) {
return mi_allocator_init(message);
}
void _mi_allocator_done(void) {
mi_allocator_done();
}
#endif

View file

@ -455,7 +455,7 @@ static size_t mi_segment_calculate_sizes(size_t capacity, size_t required, size_
if (MI_SECURE == 0) { if (MI_SECURE == 0) {
// normally no guard pages // normally no guard pages
#if MI_DEBUG_GUARDED #if MI_GUARDED
isize = _mi_align_up(minsize, _mi_os_page_size()); isize = _mi_align_up(minsize, _mi_os_page_size());
#else #else
isize = _mi_align_up(minsize, 16 * MI_MAX_ALIGN_SIZE); isize = _mi_align_up(minsize, 16 * MI_MAX_ALIGN_SIZE);

View file

@ -118,6 +118,7 @@ static void mi_stats_add(mi_stats_t* stats, const mi_stats_t* src) {
mi_stat_counter_add(&stats->searches, &src->searches, 1); mi_stat_counter_add(&stats->searches, &src->searches, 1);
mi_stat_counter_add(&stats->normal_count, &src->normal_count, 1); mi_stat_counter_add(&stats->normal_count, &src->normal_count, 1);
mi_stat_counter_add(&stats->huge_count, &src->huge_count, 1); mi_stat_counter_add(&stats->huge_count, &src->huge_count, 1);
mi_stat_counter_add(&stats->guarded_alloc_count, &src->guarded_alloc_count, 1);
#if MI_STAT>1 #if MI_STAT>1
for (size_t i = 0; i <= MI_BIN_HUGE; i++) { for (size_t i = 0; i <= MI_BIN_HUGE; i++) {
if (src->normal_bins[i].allocated > 0 || src->normal_bins[i].freed > 0) { if (src->normal_bins[i].allocated > 0 || src->normal_bins[i].freed > 0) {
@ -342,6 +343,7 @@ static void _mi_stats_print(mi_stats_t* stats, mi_output_fun* out0, void* arg0)
mi_stat_counter_print(&stats->commit_calls, "commits", out, arg); mi_stat_counter_print(&stats->commit_calls, "commits", out, arg);
mi_stat_counter_print(&stats->reset_calls, "resets", out, arg); mi_stat_counter_print(&stats->reset_calls, "resets", out, arg);
mi_stat_counter_print(&stats->purge_calls, "purges", out, arg); mi_stat_counter_print(&stats->purge_calls, "purges", out, arg);
mi_stat_counter_print(&stats->guarded_alloc_count, "guarded", out, arg);
mi_stat_print(&stats->threads, "threads", -1, out, arg); mi_stat_print(&stats->threads, "threads", -1, out, arg);
mi_stat_counter_print_avg(&stats->searches, "searches", out, arg); mi_stat_counter_print_avg(&stats->searches, "searches", out, arg);
_mi_fprintf(out, arg, "%10s: %5zu\n", "numa nodes", _mi_os_numa_node_count()); _mi_fprintf(out, arg, "%10s: %5zu\n", "numa nodes", _mi_os_numa_node_count());

View file

@ -19,6 +19,7 @@ static void test_reserved(void);
static void negative_stat(void); static void negative_stat(void);
static void alloc_huge(void); static void alloc_huge(void);
static void test_heap_walk(void); static void test_heap_walk(void);
static void test_canary_leak(void);
// static void test_large_pages(void); // static void test_large_pages(void);
@ -31,7 +32,8 @@ int main() {
// double_free2(); // double_free2();
// corrupt_free(); // corrupt_free();
// block_overflow1(); // block_overflow1();
block_overflow2(); // block_overflow2();
test_canary_leak();
// test_aslr(); // test_aslr();
// invalid_free(); // invalid_free();
// test_reserved(); // test_reserved();
@ -226,6 +228,15 @@ static void test_heap_walk(void) {
mi_heap_visit_blocks(heap, true, &test_visit, NULL); mi_heap_visit_blocks(heap, true, &test_visit, NULL);
} }
static void test_canary_leak(void) {
char* p = mi_mallocn_tp(char,23);
for(int i = 0; i < 23; i++) {
p[i] = '0'+i;
}
puts(p);
free(p);
}
// Experiment with huge OS pages // Experiment with huge OS pages
#if 0 #if 0

View file

@ -11,7 +11,7 @@
#include <iostream> #include <iostream>
#include <thread> #include <thread>
#include <mimalloc.h> //#include <mimalloc.h>
#include <assert.h> #include <assert.h>
#ifdef _WIN32 #ifdef _WIN32
@ -37,14 +37,18 @@ static void tsan_numa_test(); // issue #414
static void strdup_test(); // issue #445 static void strdup_test(); // issue #445
static void heap_thread_free_huge(); static void heap_thread_free_huge();
static void test_std_string(); // issue #697 static void test_std_string(); // issue #697
static void test_thread_local(); // issue #944
// static void test_mixed0(); // issue #942
static void test_mixed1(); // issue #942
static void test_stl_allocators(); static void test_stl_allocators();
int main() { int main() {
// mi_stats_reset(); // ignore earlier allocations // mi_stats_reset(); // ignore earlier allocations
test_std_string(); test_mixed1();
//test_std_string();
//test_thread_local();
// heap_thread_free_huge(); // heap_thread_free_huge();
/* /*
heap_thread_free_large(); heap_thread_free_large();
@ -58,7 +62,7 @@ int main() {
test_mt_shutdown(); test_mt_shutdown();
*/ */
//fail_aslr(); //fail_aslr();
// mi_stats_print(NULL); mi_stats_print(NULL);
return 0; return 0;
} }
@ -177,6 +181,89 @@ static void test_stl_allocators() {
#endif #endif
} }
#if 0
#include <algorithm>
#include <chrono>
#include <functional>
#include <iostream>
#include <thread>
#include <vector>
static void test_mixed0() {
std::vector<std::unique_ptr<std::size_t>> numbers(1024 * 1024 * 100);
std::vector<std::thread> threads(1);
std::atomic<std::size_t> index{};
auto start = std::chrono::system_clock::now();
for (auto& thread : threads) {
thread = std::thread{[&index, &numbers]() {
while (true) {
auto i = index.fetch_add(1, std::memory_order_relaxed);
if (i >= numbers.size()) return;
numbers[i] = std::make_unique<std::size_t>(i);
}
}};
}
for (auto& thread : threads) thread.join();
auto end = std::chrono::system_clock::now();
auto duration =
std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "Running on " << threads.size() << " threads took " << duration
<< std::endl;
}
#endif
void asd() {
void* p = malloc(128);
free(p);
}
static void test_mixed1() {
std::thread thread(asd);
thread.join();
}
#if 0
// issue #691
static char* cptr;
static void* thread1_allocate()
{
cptr = mi_calloc_tp(char,22085632);
return NULL;
}
static void* thread2_free()
{
assert(cptr);
mi_free(cptr);
cptr = NULL;
return NULL;
}
static void test_large_migrate(void) {
auto t1 = std::thread(thread1_allocate);
t1.join();
auto t2 = std::thread(thread2_free);
t2.join();
/*
pthread_t thread1, thread2;
pthread_create(&thread1, NULL, &thread1_allocate, NULL);
pthread_join(thread1, NULL);
pthread_create(&thread2, NULL, &thread2_free, NULL);
pthread_join(thread2, NULL);
*/
return;
}
#endif
// issue 445 // issue 445
static void strdup_test() { static void strdup_test() {
#ifdef _MSC_VER #ifdef _MSC_VER
@ -312,3 +399,31 @@ static void tsan_numa_test() {
dummy_worker(); dummy_worker();
t1.join(); t1.join();
} }
class MTest
{
char *data;
public:
MTest() { data = (char*)malloc(1024); }
~MTest() { free(data); };
};
thread_local MTest tlVariable;
void threadFun( int i )
{
printf( "Thread %d\n", i );
std::this_thread::sleep_for( std::chrono::milliseconds(100) );
}
void test_thread_local()
{
for( int i=1; i < 100; ++i )
{
std::thread t( threadFun, i );
t.join();
mi_stats_print(NULL);
}
return;
}

View file

@ -271,7 +271,7 @@ int main(void) {
mi_free(p); mi_free(p);
}; };
#if !(MI_TRACK_VALGRIND || MI_TRACK_ASAN || MI_DEBUG_GUARDED) #if !(MI_TRACK_VALGRIND || MI_TRACK_ASAN || MI_GUARDED)
CHECK_BODY("fill-freed-small") { CHECK_BODY("fill-freed-small") {
size_t malloc_size = MI_SMALL_SIZE_MAX / 2; size_t malloc_size = MI_SMALL_SIZE_MAX / 2;
uint8_t* p = (uint8_t*)mi_malloc(malloc_size); uint8_t* p = (uint8_t*)mi_malloc(malloc_size);

View file

@ -22,19 +22,22 @@ terms of the MIT license.
#include <string.h> #include <string.h>
#include <assert.h> #include <assert.h>
// #define MI_GUARDED
// #define USE_STD_MALLOC
// > mimalloc-test-stress [THREADS] [SCALE] [ITER] // > mimalloc-test-stress [THREADS] [SCALE] [ITER]
// //
// argument defaults // argument defaults
#if defined(MI_TSAN) // with thread-sanitizer reduce the threads to test within the azure pipeline limits #if defined(MI_TSAN) // with thread-sanitizer reduce the threads to test within the azure pipeline limits
static int THREADS = 8; static int THREADS = 8;
static int SCALE = 25; static int SCALE = 25;
static int ITER = 400; static int ITER = 400;
#elif defined(MI_UBSAN) // with undefined behavious sanitizer reduce parameters to stay within the azure pipeline limits #elif defined(MI_UBSAN) // with undefined behavious sanitizer reduce parameters to stay within the azure pipeline limits
static int THREADS = 8; static int THREADS = 8;
static int SCALE = 25; static int SCALE = 25;
static int ITER = 20; static int ITER = 20;
#elif defined(MI_DEBUG_GUARDED) // with debug guard pages reduce parameters to stay within the azure pipeline limits #elif defined(xMI_GUARDED) // with debug guard pages reduce parameters to stay within the azure pipeline limits
static int THREADS = 8; static int THREADS = 8;
static int SCALE = 10; static int SCALE = 10;
static int ITER = 10; static int ITER = 10;
#else #else
@ -47,16 +50,11 @@ static int ITER = 50; // N full iterations destructing and re-creating a
#define STRESS // undefine for leak test #define STRESS // undefine for leak test
#ifndef NDEBUG
#define HEAP_WALK // walk the heap objects?
#endif
static bool allow_large_objects = true; // allow very large objects? (set to `true` if SCALE>100) static bool allow_large_objects = true; // allow very large objects? (set to `true` if SCALE>100)
static size_t use_one_size = 0; // use single object size of `N * sizeof(uintptr_t)`? static size_t use_one_size = 0; // use single object size of `N * sizeof(uintptr_t)`?
static bool main_participates = false; // main thread participates as a worker too static bool main_participates = false; // main thread participates as a worker too
// #define USE_STD_MALLOC
#ifdef USE_STD_MALLOC #ifdef USE_STD_MALLOC
#define custom_calloc(n,s) calloc(n,s) #define custom_calloc(n,s) calloc(n,s)
#define custom_realloc(p,s) realloc(p,s) #define custom_realloc(p,s) realloc(p,s)
@ -66,6 +64,9 @@ static bool main_participates = false; // main thread participates as a
#define custom_calloc(n,s) mi_calloc(n,s) #define custom_calloc(n,s) mi_calloc(n,s)
#define custom_realloc(p,s) mi_realloc(p,s) #define custom_realloc(p,s) mi_realloc(p,s)
#define custom_free(p) mi_free(p) #define custom_free(p) mi_free(p)
#ifndef NDEBUG
#define HEAP_WALK // walk the heap objects?
#endif
#endif #endif
// transfer pointer between threads // transfer pointer between threads
@ -220,7 +221,7 @@ static void test_stress(void) {
uintptr_t r = rand(); uintptr_t r = rand();
for (int n = 0; n < ITER; n++) { for (int n = 0; n < ITER; n++) {
run_os_threads(THREADS, &stress); run_os_threads(THREADS, &stress);
#ifndef NDEBUG #if !defined(NDEBUG) && !defined(USE_STD_MALLOC)
// switch between arena and OS allocation for testing // switch between arena and OS allocation for testing
mi_option_set_enabled(mi_option_disallow_arena_alloc, (n%2)==1); mi_option_set_enabled(mi_option_disallow_arena_alloc, (n%2)==1);
#endif #endif
@ -270,7 +271,7 @@ int main(int argc, char** argv) {
#ifdef HEAP_WALK #ifdef HEAP_WALK
mi_option_enable(mi_option_visit_abandoned); mi_option_enable(mi_option_visit_abandoned);
#endif #endif
#ifndef NDEBUG #if !defined(NDEBUG) && !defined(USE_STD_MALLOC)
mi_option_set(mi_option_arena_reserve, 32 * 1024 /* in kib = 32MiB */); mi_option_set(mi_option_arena_reserve, 32 * 1024 /* in kib = 32MiB */);
#endif #endif
#ifndef USE_STD_MALLOC #ifndef USE_STD_MALLOC