Use standard _Atomic declarations and clean up atomic operations

This commit is contained in:
daan 2019-08-25 22:59:12 -07:00
parent b86c851cca
commit e8664001f7
9 changed files with 165 additions and 159 deletions

View file

@ -69,8 +69,8 @@ void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, mi_os_tld
// A region owns a chunk of REGION_SIZE (256MiB) (virtual) memory with
// a bit map with one bit per MI_SEGMENT_SIZE (4MiB) block.
typedef struct mem_region_s {
volatile uintptr_t map; // in-use bit per MI_SEGMENT_SIZE block
volatile void* start; // start of virtual memory area
volatile _Atomic(uintptr_t) map; // in-use bit per MI_SEGMENT_SIZE block
volatile _Atomic(void*) start; // start of virtual memory area
} mem_region_t;
@ -78,7 +78,7 @@ typedef struct mem_region_s {
// TODO: in the future, maintain a map per NUMA node for numa aware allocation
static mem_region_t regions[MI_REGION_MAX];
static volatile size_t regions_count = 0; // allocated regions
static volatile _Atomic(uintptr_t) regions_count; // = 0; // allocated regions
/* ----------------------------------------------------------------------------
@ -106,9 +106,9 @@ static size_t mi_good_commit_size(size_t size) {
// Return if a pointer points into a region reserved by us.
bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
if (p==NULL) return false;
size_t count = mi_atomic_read(&regions_count);
size_t count = mi_atomic_read_relaxed(&regions_count);
for (size_t i = 0; i < count; i++) {
uint8_t* start = (uint8_t*)mi_atomic_read_ptr(&regions[i].start);
uint8_t* start = (uint8_t*)mi_atomic_read_ptr_relaxed(&regions[i].start);
if (start != NULL && (uint8_t*)p >= start && (uint8_t*)p < start + MI_REGION_SIZE) return true;
}
return false;
@ -127,11 +127,11 @@ static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bit
{
size_t mask = mi_region_block_mask(blocks,bitidx);
mi_assert_internal(mask != 0);
mi_assert_internal((mask & mi_atomic_read(&region->map)) == mask);
mi_assert_internal((mask & mi_atomic_read_relaxed(&region->map)) == mask);
mi_assert_internal(&regions[idx] == region);
// ensure the region is reserved
void* start = mi_atomic_read_ptr(&region->start);
void* start = mi_atomic_read_ptr_relaxed(&region->start);
if (start == NULL)
{
start = _mi_os_alloc_aligned(MI_REGION_SIZE, MI_SEGMENT_ALIGN, mi_option_is_enabled(mi_option_eager_region_commit), tld);
@ -139,13 +139,13 @@ static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bit
// failure to allocate from the OS! unclaim the blocks and fail
size_t map;
do {
map = mi_atomic_read(&region->map);
} while (!mi_atomic_compare_exchange(&region->map, map & ~mask, map));
map = mi_atomic_read_relaxed(&region->map);
} while (!mi_atomic_cas_weak(&region->map, map & ~mask, map));
return false;
}
// set the newly allocated region
if (mi_atomic_compare_exchange_ptr(&region->start, start, NULL)) {
if (mi_atomic_cas_ptr_strong(&region->start, start, NULL)) {
// update the region count
mi_atomic_increment(&regions_count);
}
@ -154,9 +154,9 @@ static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bit
// we assign it to a later slot instead (up to 4 tries).
// note: we don't need to increment the region count, this will happen on another allocation
for(size_t i = 1; i <= 4 && idx + i < MI_REGION_MAX; i++) {
void* s = mi_atomic_read_ptr(&regions[idx+i].start);
void* s = mi_atomic_read_ptr_relaxed(&regions[idx+i].start);
if (s == NULL) { // quick test
if (mi_atomic_compare_exchange_ptr(&regions[idx+i].start, start, s)) {
if (mi_atomic_cas_ptr_weak(&regions[idx+i].start, start, s)) {
start = NULL;
break;
}
@ -167,10 +167,10 @@ static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bit
_mi_os_free(start, MI_REGION_SIZE, tld->stats);
}
// and continue with the memory at our index
start = mi_atomic_read_ptr(&region->start);
start = mi_atomic_read_ptr_relaxed(&region->start);
}
}
mi_assert_internal(start == mi_atomic_read_ptr(&region->start));
mi_assert_internal(start == mi_atomic_read_ptr_relaxed(&region->start));
mi_assert_internal(start != NULL);
// Commit the blocks to memory
@ -230,7 +230,7 @@ static bool mi_region_alloc_blocks(mem_region_t* region, size_t idx, size_t bloc
const uintptr_t mask = mi_region_block_mask(blocks, 0);
const size_t bitidx_max = MI_REGION_MAP_BITS - blocks;
uintptr_t map = mi_atomic_read(&region->map);
uintptr_t map = mi_atomic_read_relaxed(&region->map);
#ifdef MI_HAVE_BITSCAN
size_t bitidx = mi_bsf(~map); // quickly find the first zero bit if possible
@ -245,9 +245,9 @@ static bool mi_region_alloc_blocks(mem_region_t* region, size_t idx, size_t bloc
mi_assert_internal((m >> bitidx) == mask); // no overflow?
uintptr_t newmap = map | m;
mi_assert_internal((newmap^map) >> bitidx == mask);
if (!mi_atomic_compare_exchange(&region->map, newmap, map)) {
if (!mi_atomic_cas_strong(&region->map, newmap, map)) {
// no success, another thread claimed concurrently.. keep going
map = mi_atomic_read(&region->map);
map = mi_atomic_read_relaxed(&region->map);
continue;
}
else {
@ -281,7 +281,7 @@ static bool mi_region_try_alloc_blocks(size_t idx, size_t blocks, size_t size, b
// check if there are available blocks in the region..
mi_assert_internal(idx < MI_REGION_MAX);
mem_region_t* region = &regions[idx];
uintptr_t m = mi_atomic_read(&region->map);
uintptr_t m = mi_atomic_read_relaxed(&region->map);
if (m != MI_REGION_MAP_FULL) { // some bits are zero
return mi_region_alloc_blocks(region, idx, blocks, size, commit, p, id, tld);
}
@ -317,7 +317,7 @@ void* _mi_mem_alloc_aligned(size_t size, size_t alignment, bool commit, size_t*
// find a range of free blocks
void* p = NULL;
size_t count = mi_atomic_read(&regions_count);
size_t count = mi_atomic_read_relaxed(&regions_count);
size_t idx = tld->region_idx; // start index is per-thread to reduce contention
for (size_t visited = 0; visited < count; visited++, idx++) {
if (idx >= count) idx = 0; // wrap around
@ -376,8 +376,8 @@ void _mi_mem_free(void* p, size_t size, size_t id, mi_stats_t* stats) {
size_t mask = mi_region_block_mask(blocks, bitidx);
mi_assert_internal(idx < MI_REGION_MAX); if (idx >= MI_REGION_MAX) return; // or `abort`?
mem_region_t* region = &regions[idx];
mi_assert_internal((mi_atomic_read(&region->map) & mask) == mask ); // claimed?
void* start = mi_atomic_read_ptr(&region->start);
mi_assert_internal((mi_atomic_read_relaxed(&region->map) & mask) == mask ); // claimed?
void* start = mi_atomic_read_ptr_relaxed(&region->start);
mi_assert_internal(start != NULL);
void* blocks_start = (uint8_t*)start + (bitidx * MI_SEGMENT_SIZE);
mi_assert_internal(blocks_start == p); // not a pointer in our area?
@ -405,9 +405,9 @@ void _mi_mem_free(void* p, size_t size, size_t id, mi_stats_t* stats) {
uintptr_t map;
uintptr_t newmap;
do {
map = mi_atomic_read(&region->map);
map = mi_atomic_read_relaxed(&region->map);
newmap = map & ~mask;
} while (!mi_atomic_compare_exchange(&region->map, newmap, map));
} while (!mi_atomic_cas_weak(&region->map, newmap, map));
}
}
@ -419,17 +419,17 @@ void _mi_mem_collect(mi_stats_t* stats) {
// free every region that has no segments in use.
for (size_t i = 0; i < regions_count; i++) {
mem_region_t* region = &regions[i];
if (mi_atomic_read(&region->map) == 0 && region->start != NULL) {
if (mi_atomic_read_relaxed(&region->map) == 0 && region->start != NULL) {
// if no segments used, try to claim the whole region
uintptr_t m;
do {
m = mi_atomic_read(&region->map);
} while(m == 0 && !mi_atomic_compare_exchange(&region->map, ~((uintptr_t)0), 0 ));
m = mi_atomic_read_relaxed(&region->map);
} while(m == 0 && !mi_atomic_cas_weak(&region->map, ~((uintptr_t)0), 0 ));
if (m == 0) {
// on success, free the whole region
if (region->start != NULL) _mi_os_free((void*)region->start, MI_REGION_SIZE, stats);
// and release
region->start = 0;
mi_atomic_write_ptr(&region->start,NULL);
mi_atomic_write(&region->map,0);
}
}