wip: further improvement for remap

This commit is contained in:
daanx 2023-04-29 10:00:47 -07:00
parent 3e1c1f8e9f
commit e4c914565d
7 changed files with 54 additions and 65 deletions

View file

@ -74,16 +74,16 @@ int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bo
// Return `EINVAL` if this is not supported. // Return `EINVAL` if this is not supported.
// The returned memory is always committed. // The returned memory is always committed.
// If `is_pinned` is `true` the memory cannot be decommitted or reset. // If `is_pinned` is `true` the memory cannot be decommitted or reset.
// The `remap_info` argument can be used to store OS specific information that is passed to `_mi_prim_realloc_remappable` and `_mi_prim_free_remappable`. // The `remap_info` argument can be used to store OS specific information that is passed to `_mi_prim_remap` and `_mi_prim_free_remappable`.
int _mi_prim_alloc_remappable(size_t size, size_t future_reserve, bool* is_pinned, bool* is_zero, void** addr, void** remap_info ); int _mi_prim_alloc_remappable(size_t size, size_t future_reserve, bool* is_pinned, bool* is_zero, void** addr, void** remap_info );
// Remap remappable memory. Return `EINVAL` if this is not supported. // Remap remappable memory. Return `EINVAL` if this is not supported.
// pre: `addr != NULL` and previously allocated using `_mi_prim_realloc_remappable` or `_mi_prim_alloc_remappable`. // pre: `addr != NULL` and previously allocated using `_mi_prim_remap` or `_mi_prim_alloc_remappable`.
// `newsize > 0`, `size > 0`, `alignment > 0`, `allow_large != NULL`, `newaddr != NULL`. // `newsize > 0`, `size > 0`, `alignment > 0`, `allow_large != NULL`, `newaddr != NULL`.
int _mi_prim_realloc_remappable(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info ); int _mi_prim_remap(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info );
// Free remappable memory. Return `EINVAL` if this is not supported. // Free remappable memory. Return `EINVAL` if this is not supported.
// pre: `addr != NULL` and previously allocated using `_mi_prim_realloc_remappable` or `_mi_prim_alloc_remappable`. // pre: `addr != NULL` and previously allocated using `_mi_prim_remap` or `_mi_prim_alloc_remappable`.
int _mi_prim_free_remappable(void* addr, size_t size, void* remap_info ); int _mi_prim_free_remappable(void* addr, size_t size, void* remap_info );

View file

@ -541,10 +541,9 @@ static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* ms
#if (MI_DEBUG>0) #if (MI_DEBUG>0)
if mi_unlikely(!mi_is_in_heap_region(p)) { if mi_unlikely(!mi_is_in_heap_region(p)) {
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" _mi_trace_message("%s: pointer might not point to a valid heap region: %p\n" "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) { if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); _mi_trace_message("(yes, the previous pointer %p was valid after all)\n", p);
} }
} }
#endif #endif
@ -827,7 +826,7 @@ mi_decl_nodiscard void* mi_remap(void* p, size_t newsize) mi_attr_noexcept {
mi_block_t* block = _mi_page_ptr_unalign(segment, page, p); mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
const size_t bsize = mi_page_usable_block_size(page); const size_t bsize = mi_page_usable_block_size(page);
if (bsize >= padsize && 9*(bsize/10) <= padsize) { // if smaller and not more than 10% waste, keep it if (bsize >= padsize && 9*(bsize/10) <= padsize) { // if smaller and not more than 10% waste, keep it
_mi_verbose_message("remapping in the same block (address: %p from %zu bytes to %zu bytes)\n", p, mi_usable_size(p), newsize); //_mi_verbose_message("remapping in the same block (address: %p from %zu bytes to %zu bytes)\n", p, mi_usable_size(p), newsize);
mi_padding_init(page, block, newsize); mi_padding_init(page, block, newsize);
return p; return p;
} }

View file

@ -253,37 +253,33 @@ static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bo
return p; return p;
} }
static void* mi_os_align_within(void* base, size_t over_size, size_t alignment, size_t size, bool committed, bool is_pinned, mi_stats_t* stats) // aligns within an already allocated area; may modify `memid` with a new base and size.
static void* mi_os_align_within(mi_memid_t* memid, size_t alignment, size_t size, mi_stats_t* stats)
{ {
mi_assert_internal(alignment >= _mi_os_page_size()); mi_assert_internal(alignment >= _mi_os_page_size());
mi_assert_internal((size + alignment - 1) <= over_size); mi_assert_internal((size + alignment - 1) <= memid->mem.os.size);
void* p = mi_align_up_ptr(base, alignment); void* p = mi_align_up_ptr(memid->mem.os.base, alignment);
mi_assert_internal((uintptr_t)p + size <= (uintptr_t)base + over_size); mi_assert_internal((uintptr_t)p + size <= (uintptr_t)memid->mem.os.base + memid->mem.os.size);
if (!is_pinned) { if (!memid->is_pinned) {
size_t pre_size = (uint8_t*)p - (uint8_t*)base; size_t pre_size = (uint8_t*)p - (uint8_t*)memid->mem.os.base;
size_t mid_size = _mi_align_up(size, _mi_os_page_size()); size_t mid_size = mi_os_get_alloc_size(size);
size_t post_size = over_size - pre_size - mid_size; size_t post_size = memid->mem.os.size - pre_size - mid_size;
mi_assert_internal(pre_size < over_size && post_size < over_size && mid_size >= size); mi_assert_internal(pre_size < memid->mem.os.size && post_size < memid->mem.os.size && mid_size >= size);
// decommit the pre- and post part (if needed)
if (committed) {
if (pre_size > 0) { _mi_os_decommit(base, pre_size, stats); }
if (post_size > 0) { _mi_os_decommit((uint8_t*)p + mid_size, post_size, stats); }
}
/*
if (mi_os_mem_config.must_free_whole) { if (mi_os_mem_config.must_free_whole) {
// decommit the pre- and post part (if needed) // decommit the pre- and post part (if needed)
if (committed) { if (memid->initially_committed) {
if (pre_size > 0) { _mi_os_decommit(base, pre_size, stats); } if (pre_size > 0) { _mi_os_decommit(memid->mem.os.base, pre_size, stats); }
if (post_size > 0) { _mi_os_decommit((uint8_t*)p + mid_size, post_size, stats); } if (post_size > 0) { _mi_os_decommit((uint8_t*)p + mid_size, post_size, stats); }
} }
} }
else { else {
// TODO: we can only free parts if we also return an adjusted base and fullsize. // free the pre- and post part and adjust the base and size
// free the pre- and post part if (pre_size > 0) { mi_os_prim_free(memid->mem.os.base, pre_size, memid->initially_committed, stats); }
if (pre_size > 0) { mi_os_prim_free(base, pre_size, committed, stats); } if (post_size > 0) { mi_os_prim_free((uint8_t*)p + mid_size, post_size, memid->initially_committed, stats); }
if (post_size > 0) { mi_os_prim_free((uint8_t*)p + mid_size, post_size, committed, stats); } memid->mem.os.base = p;
memid->mem.os.size = mid_size;
memid->mem.os.alignment = alignment;
} }
*/
} }
mi_assert_internal(_mi_is_aligned(p, alignment)); mi_assert_internal(_mi_is_aligned(p, alignment));
return p; return p;
@ -291,41 +287,40 @@ static void* mi_os_align_within(void* base, size_t over_size, size_t alignment,
// Primitive aligned allocation from the OS. // Primitive aligned allocation from the OS.
// This function guarantees the allocated memory is aligned. // This function guarantees the allocated memory is aligned.
static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** base, size_t* fullsize, mi_stats_t* stats) { static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, mi_memid_t* memid, mi_stats_t* stats) {
mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0)); mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0));
mi_assert_internal(size > 0 && size == mi_os_get_alloc_size(size)); mi_assert_internal(size > 0 && size == mi_os_get_alloc_size(size));
mi_assert_internal(is_large != NULL); mi_assert_internal(memid != NULL);
mi_assert_internal(is_zero != NULL); *memid = _mi_memid_none();
mi_assert_internal(base != NULL);
if (!commit) allow_large = false; if (!commit) allow_large = false;
if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL; if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
size = mi_os_get_alloc_size(size); size = mi_os_get_alloc_size(size);
// try first with a hint (this will be aligned directly on Win 10+ or BSD) // try first with a hint (this will be aligned directly on Win 10+ or BSD)
void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, is_large, is_zero, stats); bool os_is_zero = false;
bool os_is_large = false;
void* p = mi_os_prim_alloc(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, stats);
if (p == NULL) return NULL; if (p == NULL) return NULL;
// aligned already? // aligned already?
if (((uintptr_t)p % alignment) == 0) { if (((uintptr_t)p % alignment) == 0) {
*base = p; *memid = _mi_memid_create_os(p, size, alignment, commit, os_is_zero, os_is_large);
*fullsize = size;
return p;
} }
else { else {
// if not aligned, free the original allocation, overallocate, and unmap around it // if not aligned, free the original allocation, overallocate, and unmap around it
_mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit); _mi_warning_message("unable to allocate aligned OS memory directly, fall back to over-allocation (size: 0x%zx bytes, address: %p, alignment: 0x%zx, commit: %d)\n", size, p, alignment, commit);
mi_os_prim_free(p, size, commit, stats); mi_os_prim_free(p, size, commit, stats);
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
const size_t oversize = size + alignment - 1; const size_t oversize = mi_os_get_alloc_size(size + alignment - 1);
p = mi_os_prim_alloc(oversize, 1 /* alignment */, commit, false /* allow_large */, is_large, is_zero, stats); p = mi_os_prim_alloc(oversize, 1 /* alignment */, commit, false /* allow_large */, &os_is_large, &os_is_zero, stats);
if (p == NULL) return NULL; if (p == NULL) return NULL;
*base = p;
*fullsize = oversize; *memid = _mi_memid_create_os(p, oversize, 1, commit, os_is_zero, os_is_large);
return mi_os_align_within(p, oversize, alignment, size, commit, *is_large, stats); p = mi_os_align_within(memid, alignment, size, stats);
} }
mi_assert_internal(p == NULL || (p != NULL && *base != NULL && ((uintptr_t)p % alignment) == 0)); mi_assert_internal(p != NULL && memid->mem.os.base != NULL && _mi_is_aligned(p, alignment));;
return p; return p;
} }
@ -357,16 +352,7 @@ void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allo
if (size == 0) return NULL; if (size == 0) return NULL;
size = _mi_os_good_alloc_size(size); size = _mi_os_good_alloc_size(size);
alignment = _mi_align_up(alignment, _mi_os_page_size()); alignment = _mi_align_up(alignment, _mi_os_page_size());
return mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, memid, &_mi_stats_main /*tld->stats*/ );
bool os_is_large = false;
bool os_is_zero = false;
void* os_base = NULL;
size_t os_size = 0;
void* p = mi_os_prim_alloc_aligned(size, alignment, commit, allow_large, &os_is_large, &os_is_zero, &os_base, &os_size, &_mi_stats_main /*tld->stats*/ );
if (p != NULL) {
*memid = _mi_memid_create_os(os_base, os_size, alignment, commit, os_is_zero, os_is_large);
}
return p;
} }
/* ----------------------------------------------------------- /* -----------------------------------------------------------
@ -428,7 +414,7 @@ void* _mi_os_alloc_remappable(size_t size, size_t future_reserve, size_t alignme
*memid = _mi_memid_create_os(base, oversize, alignment, true, os_is_zero, os_is_pinned); *memid = _mi_memid_create_os(base, oversize, alignment, true, os_is_zero, os_is_pinned);
memid->memkind = MI_MEM_OS_REMAP; memid->memkind = MI_MEM_OS_REMAP;
memid->mem.os.prim_info = remap_info; memid->mem.os.prim_info = remap_info;
return mi_os_align_within(base,oversize,alignment,size,true,memid->is_pinned,stats); return mi_os_align_within(memid,alignment,size,stats);
} }
void* _mi_os_remap(void* p, size_t size, size_t newsize, mi_memid_t* memid, mi_stats_t* stats) { void* _mi_os_remap(void* p, size_t size, size_t newsize, mi_memid_t* memid, mi_stats_t* stats) {
@ -449,12 +435,12 @@ void* _mi_os_remap(void* p, size_t size, size_t newsize, mi_memid_t* memid, mi_s
// if parts may have been decommitted, ensure it is committed now (or we get EFAULT from mremap) // if parts may have been decommitted, ensure it is committed now (or we get EFAULT from mremap)
_mi_os_commit(memid->mem.os.base, memid->mem.os.size, NULL, stats); _mi_os_commit(memid->mem.os.base, memid->mem.os.size, NULL, stats);
} }
int err = _mi_prim_realloc_remappable(memid->mem.os.base, memid->mem.os.size, oversize, &extend_is_zero, &newp, &memid->mem.os.prim_info); int err = _mi_prim_remap(memid->mem.os.base, memid->mem.os.size, oversize, &extend_is_zero, &newp, &memid->mem.os.prim_info);
if (err == 0 && newp != NULL) { if (err == 0 && newp != NULL) {
memid->initially_committed = true; const size_t alignment = memid->mem.os.alignment;
memid->mem.os.base = newp; *memid = _mi_memid_create_os(newp, oversize, 1, true /* committed */, false /* iszero */, false /* islarge */);
memid->mem.os.size = oversize; memid->memkind = MI_MEM_OS_REMAP;
return mi_os_align_within(newp, oversize, memid->mem.os.alignment, newsize, memid->initially_committed, memid->is_pinned, stats); return mi_os_align_within(memid, alignment, newsize, stats);
} }
else { else {
_mi_warning_message("failed to remap OS memory (error %d (0x%02x) at %p of %zu bytes to %zu bytes)\n", err, err, p, size, newsize); _mi_warning_message("failed to remap OS memory (error %d (0x%02x) at %p of %zu bytes to %zu bytes)\n", err, err, p, size, newsize);
@ -464,7 +450,10 @@ void* _mi_os_remap(void* p, size_t size, size_t newsize, mi_memid_t* memid, mi_s
// fall back to copy (but in remappable memory if possible) // fall back to copy (but in remappable memory if possible)
mi_memid_t newmemid = _mi_memid_none(); mi_memid_t newmemid = _mi_memid_none();
void* newp = _mi_os_alloc_remappable(newsize, 0, memid->mem.os.alignment, &newmemid, stats); void* newp = _mi_os_alloc_remappable(newsize, 0, memid->mem.os.alignment, &newmemid, stats);
if (newp == NULL) return NULL; if (newp == NULL) {
newp = _mi_os_alloc_aligned(newsize, memid->mem.os.alignment, true /* commit */, false /* allow_large */, &newmemid, stats);
if (newp == NULL) return NULL;
}
size_t csize = (size > newsize ? newsize : size); size_t csize = (size > newsize ? newsize : size);
_mi_memcpy_aligned(newp, p, csize); _mi_memcpy_aligned(newp, p, csize);

View file

@ -884,7 +884,7 @@ int _mi_prim_alloc_remappable(size_t size, size_t future_reserve, bool* is_pinne
#endif #endif
} }
int _mi_prim_realloc_remappable(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info ) { int _mi_prim_remap(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info ) {
#if !defined(MREMAP_MAYMOVE) #if !defined(MREMAP_MAYMOVE)
MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(newsize); MI_UNUSED(extend_is_zero); MI_UNUSED(newaddr); MI_UNUSED(remap_info); MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(newsize); MI_UNUSED(extend_is_zero); MI_UNUSED(newaddr); MI_UNUSED(remap_info);
return EINVAL; return EINVAL;

View file

@ -284,7 +284,7 @@ int _mi_prim_alloc_remappable(size_t size, size_t future_reserve, bool* is_pinne
return EINVAL; return EINVAL;
} }
int _mi_prim_realloc_remappable(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info ) { int _mi_prim_remap(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info ) {
MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(newsize); MI_UNUSED(extend_is_zero); MI_UNUSED(newaddr); MI_UNUSED(remap_info); MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(newsize); MI_UNUSED(extend_is_zero); MI_UNUSED(newaddr); MI_UNUSED(remap_info);
return EINVAL; return EINVAL;
} }

View file

@ -633,7 +633,7 @@ int _mi_prim_alloc_remappable(size_t size, size_t future_reserve, bool* is_pinne
return _mi_prim_alloc(size, 1, true, true, is_pinned, is_zero, addr); return _mi_prim_alloc(size, 1, true, true, is_pinned, is_zero, addr);
} }
int _mi_prim_realloc_remappable(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info ) { int _mi_prim_remap(void* addr, size_t size, size_t newsize, bool* extend_is_zero, void** newaddr, void** remap_info ) {
MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(newsize); MI_UNUSED(extend_is_zero); MI_UNUSED(newaddr); MI_UNUSED(remap_info); MI_UNUSED(addr); MI_UNUSED(size); MI_UNUSED(newsize); MI_UNUSED(extend_is_zero); MI_UNUSED(newaddr); MI_UNUSED(remap_info);
return EINVAL; return EINVAL;
} }

View file

@ -237,6 +237,7 @@ static void test_remap(void) {
uint8_t v = p[idx]; uint8_t v = p[idx];
if (v != i) { if (v != i) {
printf("error: corrupted memory in remap: i=%d, index=0x%zx, value=%u \n", i, idx,v); printf("error: corrupted memory in remap: i=%d, index=0x%zx, value=%u \n", i, idx,v);
abort();
}; };
} }
mi_free(p); mi_free(p);