mirror of
https://github.com/microsoft/mimalloc.git
synced 2025-07-06 19:38:41 +03:00
Merge branch 'dev' into dev-arena
This commit is contained in:
commit
e226ebcc97
20 changed files with 6123 additions and 216 deletions
|
@ -23,18 +23,16 @@ terms of the MIT license. A copy of the license can be found in the file
|
|||
#include <stdatomic.h>
|
||||
#endif
|
||||
|
||||
#define mi_atomic_cast(tp,x) (volatile _Atomic(tp)*)(x)
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Atomic operations specialized for mimalloc
|
||||
// ------------------------------------------------------
|
||||
|
||||
// Atomically add a 64-bit value; returns the previous value.
|
||||
// Note: not using _Atomic(int64_t) as it is only used for statistics.
|
||||
static inline void mi_atomic_add64(volatile int64_t* p, int64_t add);
|
||||
static inline void mi_atomic_addi64(volatile int64_t* p, int64_t add);
|
||||
|
||||
// Atomically add a value; returns the previous value. Memory ordering is relaxed.
|
||||
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add);
|
||||
static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add);
|
||||
|
||||
// Atomically "and" a value; returns the previous value. Memory ordering is relaxed.
|
||||
static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x);
|
||||
|
@ -42,7 +40,6 @@ static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t
|
|||
// Atomically "or" a value; returns the previous value. Memory ordering is relaxed.
|
||||
static inline uintptr_t mi_atomic_or(volatile _Atomic(uintptr_t)* p, uintptr_t x);
|
||||
|
||||
|
||||
// Atomically compare and exchange a value; returns `true` if successful.
|
||||
// May fail spuriously. Memory ordering as release on success, and relaxed on failure.
|
||||
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
|
||||
|
@ -69,57 +66,57 @@ static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x);
|
|||
static inline void mi_atomic_yield(void);
|
||||
|
||||
|
||||
|
||||
// Atomically add a value; returns the previous value.
|
||||
static inline uintptr_t mi_atomic_addu(volatile _Atomic(uintptr_t)* p, uintptr_t add) {
|
||||
return (uintptr_t)mi_atomic_add((volatile _Atomic(intptr_t)*)p, (intptr_t)add);
|
||||
}
|
||||
// Atomically subtract a value; returns the previous value.
|
||||
static inline uintptr_t mi_atomic_subu(volatile _Atomic(uintptr_t)* p, uintptr_t sub) {
|
||||
return (uintptr_t)mi_atomic_add((volatile _Atomic(intptr_t)*)p, -((intptr_t)sub));
|
||||
static inline uintptr_t mi_atomic_sub(volatile _Atomic(uintptr_t)* p, uintptr_t sub) {
|
||||
return mi_atomic_add(p, (uintptr_t)(-((intptr_t)sub)));
|
||||
}
|
||||
|
||||
// Atomically increment a value; returns the incremented result.
|
||||
static inline uintptr_t mi_atomic_increment(volatile _Atomic(uintptr_t)* p) {
|
||||
return mi_atomic_addu(p, 1);
|
||||
return mi_atomic_add(p, 1);
|
||||
}
|
||||
|
||||
// Atomically decrement a value; returns the decremented result.
|
||||
static inline uintptr_t mi_atomic_decrement(volatile _Atomic(uintptr_t)* p) {
|
||||
return mi_atomic_subu(p, 1);
|
||||
return mi_atomic_sub(p, 1);
|
||||
}
|
||||
|
||||
// Atomically read a pointer; Memory order is relaxed.
|
||||
static inline void* mi_atomic_read_ptr_relaxed(volatile _Atomic(void*) const * p) {
|
||||
return (void*)mi_atomic_read_relaxed((const volatile _Atomic(uintptr_t)*)p);
|
||||
// Atomically add a signed value; returns the previous value.
|
||||
static inline intptr_t mi_atomic_addi(volatile _Atomic(intptr_t)* p, intptr_t add) {
|
||||
return (intptr_t)mi_atomic_add((volatile _Atomic(uintptr_t)*)p, (uintptr_t)add);
|
||||
}
|
||||
|
||||
// Atomically subtract a signed value; returns the previous value.
|
||||
static inline intptr_t mi_atomic_subi(volatile _Atomic(intptr_t)* p, intptr_t sub) {
|
||||
return (intptr_t)mi_atomic_addi(p,-sub);
|
||||
}
|
||||
|
||||
// Atomically read a pointer; Memory order is relaxed (i.e. no fence, only atomic).
|
||||
#define mi_atomic_read_ptr_relaxed(T,p) \
|
||||
(T*)(mi_atomic_read_relaxed((const volatile _Atomic(uintptr_t)*)(p)))
|
||||
|
||||
// Atomically read a pointer; Memory order is acquire.
|
||||
static inline void* mi_atomic_read_ptr(volatile _Atomic(void*) const * p) {
|
||||
return (void*)mi_atomic_read((const volatile _Atomic(uintptr_t)*)p);
|
||||
}
|
||||
#define mi_atomic_read_ptr(T,p) \
|
||||
(T*)(mi_atomic_read((const volatile _Atomic(uintptr_t)*)(p)))
|
||||
|
||||
// Atomically write a pointer
|
||||
static inline void mi_atomic_write_ptr(volatile _Atomic(void*)* p, void* x) {
|
||||
mi_atomic_write((volatile _Atomic(uintptr_t)*)p, (uintptr_t)x );
|
||||
}
|
||||
// Atomically write a pointer; Memory order is acquire.
|
||||
#define mi_atomic_write_ptr(T,p,x) \
|
||||
mi_atomic_write((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)x))
|
||||
|
||||
// Atomically compare and exchange a pointer; returns `true` if successful. May fail spuriously.
|
||||
// Memory order is release. (like a write)
|
||||
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
|
||||
static inline bool mi_atomic_cas_ptr_weak(volatile _Atomic(void*)* p, void* desired, void* expected) {
|
||||
return mi_atomic_cas_weak((volatile _Atomic(uintptr_t)*)p, (uintptr_t)desired, (uintptr_t)expected);
|
||||
}
|
||||
|
||||
// Atomically compare and exchange a pointer; returns `true` if successful.
|
||||
#define mi_atomic_cas_ptr_weak(T,p,desired,expected) \
|
||||
mi_atomic_cas_weak((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)(desired)), (uintptr_t)((T*)(expected)))
|
||||
|
||||
// Atomically compare and exchange a pointer; returns `true` if successful. Memory order is acquire_release.
|
||||
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
|
||||
static inline bool mi_atomic_cas_ptr_strong(volatile _Atomic(void*)* p, void* desired, void* expected) {
|
||||
return mi_atomic_cas_strong((volatile _Atomic(uintptr_t)*)p, (uintptr_t)desired, (uintptr_t)expected);
|
||||
}
|
||||
#define mi_atomic_cas_ptr_strong(T,p,desired,expected) \
|
||||
mi_atomic_cas_strong((volatile _Atomic(uintptr_t)*)(p),(uintptr_t)((T*)(desired)), (uintptr_t)((T*)(expected)))
|
||||
|
||||
// Atomically exchange a pointer value.
|
||||
static inline void* mi_atomic_exchange_ptr(volatile _Atomic(void*)* p, void* exchange) {
|
||||
return (void*)mi_atomic_exchange((volatile _Atomic(uintptr_t)*)p, (uintptr_t)exchange);
|
||||
}
|
||||
#define mi_atomic_exchange_ptr(T,p,exchange) \
|
||||
(T*)mi_atomic_exchange((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)exchange))
|
||||
|
||||
|
||||
#ifdef _MSC_VER
|
||||
|
@ -133,8 +130,8 @@ typedef LONG64 msc_intptr_t;
|
|||
typedef LONG msc_intptr_t;
|
||||
#define MI_64(f) f
|
||||
#endif
|
||||
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add) {
|
||||
return (intptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
|
||||
static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add) {
|
||||
return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
|
||||
return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x);
|
||||
|
@ -155,17 +152,21 @@ static inline uintptr_t mi_atomic_read(volatile _Atomic(uintptr_t) const* p) {
|
|||
return *p;
|
||||
}
|
||||
static inline uintptr_t mi_atomic_read_relaxed(volatile _Atomic(uintptr_t) const* p) {
|
||||
return mi_atomic_read(p);
|
||||
return *p;
|
||||
}
|
||||
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
|
||||
#if defined(_M_IX86) || defined(_M_X64)
|
||||
*p = x;
|
||||
#else
|
||||
mi_atomic_exchange(p,x);
|
||||
#endif
|
||||
}
|
||||
static inline void mi_atomic_yield(void) {
|
||||
YieldProcessor();
|
||||
}
|
||||
static inline void mi_atomic_add64(volatile _Atomic(int64_t)* p, int64_t add) {
|
||||
static inline void mi_atomic_addi64(volatile _Atomic(int64_t)* p, int64_t add) {
|
||||
#ifdef _WIN64
|
||||
mi_atomic_add(p,add);
|
||||
mi_atomic_addi(p,add);
|
||||
#else
|
||||
int64_t current;
|
||||
int64_t sum;
|
||||
|
@ -182,11 +183,11 @@ static inline void mi_atomic_add64(volatile _Atomic(int64_t)* p, int64_t add) {
|
|||
#else
|
||||
#define MI_USING_STD
|
||||
#endif
|
||||
static inline void mi_atomic_add64(volatile int64_t* p, int64_t add) {
|
||||
static inline void mi_atomic_addi64(volatile int64_t* p, int64_t add) {
|
||||
MI_USING_STD
|
||||
atomic_fetch_add_explicit((volatile _Atomic(int64_t)*)p, add, memory_order_relaxed);
|
||||
}
|
||||
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add) {
|
||||
static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add) {
|
||||
MI_USING_STD
|
||||
return atomic_fetch_add_explicit(p, add, memory_order_relaxed);
|
||||
}
|
||||
|
|
|
@ -8,7 +8,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
|||
#ifndef MIMALLOC_H
|
||||
#define MIMALLOC_H
|
||||
|
||||
#define MI_MALLOC_VERSION 140 // major + 2 digits minor
|
||||
#define MI_MALLOC_VERSION 150 // major + 2 digits minor
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Compiler specific attributes
|
||||
|
@ -369,9 +369,9 @@ mi_decl_export void* mi_new_reallocn(void* p, size_t newcount, size_t size) mi_a
|
|||
#endif
|
||||
|
||||
template<class T> struct mi_stl_allocator {
|
||||
typedef T value_type;
|
||||
typedef T value_type;
|
||||
typedef std::size_t size_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef std::ptrdiff_t difference_type;
|
||||
typedef value_type& reference;
|
||||
typedef value_type const& const_reference;
|
||||
typedef value_type* pointer;
|
||||
|
@ -384,23 +384,23 @@ template<class T> struct mi_stl_allocator {
|
|||
mi_stl_allocator select_on_container_copy_construction() const { return *this; }
|
||||
void deallocate(T* p, size_type) { mi_free(p); }
|
||||
|
||||
#if (__cplusplus >= 201703L) // C++17
|
||||
#if (__cplusplus >= 201703L) // C++17
|
||||
T* allocate(size_type count) { return static_cast<T*>(mi_new_n(count, sizeof(T))); }
|
||||
T* allocate(size_type count, const void*) { return allocate(count); }
|
||||
#else
|
||||
T* allocate(size_type count, const void*) { return allocate(count); }
|
||||
#else
|
||||
pointer allocate(size_type count, const void* = 0) { return static_cast<pointer>(mi_new_n(count, sizeof(value_type))); }
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if ((__cplusplus >= 201103L) || (_MSC_VER > 1900)) // C++11
|
||||
using propagate_on_container_copy_assignment = std::true_type;
|
||||
using propagate_on_container_move_assignment = std::true_type;
|
||||
using propagate_on_container_swap = std::true_type;
|
||||
using is_always_equal = std::true_type;
|
||||
template <class U, class ...Args> void construct(U* p, Args&& ...args) { ::new(p) U(std::forward<Args>(args)...); }
|
||||
template <class U> void destroy(U* p) mi_attr_noexcept { p->~U(); }
|
||||
template <class U> void destroy(U* p) mi_attr_noexcept { p->~U(); }
|
||||
#else
|
||||
void construct(pointer p, value_type const& val) { ::new(p) value_type(val); }
|
||||
void destroy(pointer p) { p->~value_type(); }
|
||||
void destroy(pointer p) { p->~value_type(); }
|
||||
#endif
|
||||
|
||||
size_type max_size() const mi_attr_noexcept { return (std::numeric_limits<difference_type>::max() / sizeof(value_type)); }
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue