diff --git a/readme.md b/readme.md index 59f32689..3480690a 100644 --- a/readme.md +++ b/readme.md @@ -264,11 +264,13 @@ with 128GB ECC memory, running Ubuntu 18.04.1 with LibC 2.27 and GCC 7.3.0. The first benchmark set consists of programs that allocate a lot: -![bench-r5a-4xlarge-t1](doc/bench-r5a-4xlarge-t1.png) +![bench-r5a-1](doc/bench-r5a-1.svg) +![bench-r5a-2](doc/bench-r5a-2.svg) Memory usage: -![bench-r5a-4xlarge-m1](doc/bench-r5a-4xlarge-m1.png) +![bench-r5a-rss-1](doc/bench-r5a-rss-1.svg) +![bench-r5a-rss-1](doc/bench-r5a-rss-2.svg) The benchmarks above are (with N=16 in our case): @@ -309,9 +311,6 @@ diffrerences here when running with 16 cores in parallel. The second benchmark tests specific aspects of the allocators and shows more extreme differences between allocators: -![bench-r5a-4xlarge-t2](doc/bench-r5a-4xlarge-t2.png) - -![bench-r5a-4xlarge-m2](doc/bench-r5a-4xlarge-m2.png) The benchmarks in the second set are (again with N=16): @@ -354,6 +353,14 @@ Hoard allocator is specifically designed to avoid this false sharing and we are not sure why it is not doing well here (although it still runs almost 5× faster than tcmalloc and jxmalloc). +## Benchmarks on a 4-core Intel workstation + +![bench-z4-1](doc/bench-z4-1.svg) +![bench-z4-2](doc/bench-z4-2.svg) + +![bench-z4-rss-1](doc/bench-z4-rss-1.svg) +![bench-z4-rss-2](doc/bench-z4-rss-2.svg) + # References