merge from dev new atomics

This commit is contained in:
daan 2019-08-26 12:30:03 -07:00
commit a654732d99
11 changed files with 225 additions and 187 deletions

View file

@ -9,63 +9,109 @@ terms of the MIT license. A copy of the license can be found in the file
#define MIMALLOC_ATOMIC_H
// ------------------------------------------------------
// Atomics
// Atomics
// We need to be portable between C, C++, and MSVC.
// ------------------------------------------------------
// Atomically increment a value; returns the incremented result.
static inline uintptr_t mi_atomic_increment(volatile uintptr_t* p);
#if defined(_MSC_VER)
#define _Atomic(tp) tp
#define ATOMIC_VAR_INIT(x) x
#elif defined(__cplusplus)
#include <atomic>
#define _Atomic(tp) std::atomic<tp>
#else
#include <stdatomic.h>
#endif
// Atomically increment a value; returns the incremented result.
static inline uint32_t mi_atomic_increment32(volatile uint32_t* p);
#define mi_atomic_cast(tp,x) (volatile _Atomic(tp)*)(x)
// Atomically decrement a value; returns the decremented result.
static inline uintptr_t mi_atomic_decrement(volatile uintptr_t* p);
// ------------------------------------------------------
// Atomic operations specialized for mimalloc
// ------------------------------------------------------
// Atomically add a 64-bit value; returns the added result.
static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add);
// Atomically add a 64-bit value; returns the previous value.
// Note: not using _Atomic(int64_t) as it is only used for statistics.
static inline void mi_atomic_add64(volatile int64_t* p, int64_t add);
// Atomically subtract a value; returns the subtracted result.
static inline uintptr_t mi_atomic_subtract(volatile uintptr_t* p, uintptr_t sub);
// Atomically add a value; returns the previous value. Memory ordering is relaxed.
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add);
// Atomically subtract a value; returns the subtracted result.
static inline uint32_t mi_atomic_subtract32(volatile uint32_t* p, uint32_t sub);
// Atomically compare and exchange a value; returns `true` if successful.
// May fail spuriously. Memory ordering as release on success, and relaxed on failure.
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected);
// Atomically compare and exchange a value; returns `true` if successful.
static inline bool mi_atomic_compare_exchange32(volatile uint32_t* p, uint32_t exchange, uint32_t compare);
// Memory ordering is acquire-release
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected);
// Atomically compare and exchange a value; returns `true` if successful.
static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t exchange, uintptr_t compare);
// Atomically exchange a value. Memory ordering is acquire-release.
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange);
// Atomically exchange a value.
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange);
// Atomically read a value. Memory ordering is relaxed.
static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p);
// Atomically read a value
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p);
// Atomically read a value. Memory ordering is acquire.
static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p);
// Atomically write a value
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x);
// Atomically read a pointer
static inline void* mi_atomic_read_ptr(volatile void** p) {
return (void*)mi_atomic_read( (volatile uintptr_t*)p );
}
// Atomically write a value. Memory ordering is release.
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x);
// Yield
static inline void mi_atomic_yield(void);
// Atomically add a value; returns the previous value.
static inline uintptr_t mi_atomic_addu(volatile _Atomic(uintptr_t)* p, uintptr_t add) {
return (uintptr_t)mi_atomic_add((volatile _Atomic(intptr_t)*)p, (intptr_t)add);
}
// Atomically subtract a value; returns the previous value.
static inline uintptr_t mi_atomic_subu(volatile _Atomic(uintptr_t)* p, uintptr_t sub) {
return (uintptr_t)mi_atomic_add((volatile _Atomic(intptr_t)*)p, -((intptr_t)sub));
}
// Atomically increment a value; returns the incremented result.
static inline uintptr_t mi_atomic_increment(volatile _Atomic(uintptr_t)* p) {
return mi_atomic_addu(p, 1);
}
// Atomically decrement a value; returns the decremented result.
static inline uintptr_t mi_atomic_decrement(volatile _Atomic(uintptr_t)* p) {
return mi_atomic_subu(p, 1);
}
// Atomically read a pointer; Memory order is relaxed.
static inline void* mi_atomic_read_ptr_relaxed(volatile _Atomic(void*) const * p) {
return (void*)mi_atomic_read_relaxed((const volatile _Atomic(uintptr_t)*)p);
}
// Atomically read a pointer; Memory order is acquire.
static inline void* mi_atomic_read_ptr(volatile _Atomic(void*) const * p) {
return (void*)mi_atomic_read((const volatile _Atomic(uintptr_t)*)p);
}
// Atomically write a pointer
static inline void mi_atomic_write_ptr(volatile void** p, void* x) {
mi_atomic_write((volatile uintptr_t*)p, (uintptr_t)x );
static inline void mi_atomic_write_ptr(volatile _Atomic(void*)* p, void* x) {
mi_atomic_write((volatile _Atomic(uintptr_t)*)p, (uintptr_t)x );
}
// Atomically compare and exchange a pointer; returns `true` if successful. May fail spuriously.
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
static inline bool mi_atomic_cas_ptr_weak(volatile _Atomic(void*)* p, void* desired, void* expected) {
return mi_atomic_cas_weak((volatile _Atomic(uintptr_t)*)p, (uintptr_t)desired, (uintptr_t)expected);
}
// Atomically compare and exchange a pointer; returns `true` if successful.
static inline bool mi_atomic_compare_exchange_ptr(volatile void** p, void* newp, void* compare) {
return mi_atomic_compare_exchange((volatile uintptr_t*)p, (uintptr_t)newp, (uintptr_t)compare);
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
static inline bool mi_atomic_cas_ptr_strong(volatile _Atomic(void*)* p, void* desired, void* expected) {
return mi_atomic_cas_strong((volatile _Atomic(uintptr_t)*)p, (uintptr_t)desired, (uintptr_t)expected);
}
// Atomically exchange a pointer value.
static inline void* mi_atomic_exchange_ptr(volatile void** p, void* exchange) {
return (void*)mi_atomic_exchange((volatile uintptr_t*)p, (uintptr_t)exchange);
static inline void* mi_atomic_exchange_ptr(volatile _Atomic(void*)* p, void* exchange) {
return (void*)mi_atomic_exchange((volatile _Atomic(uintptr_t)*)p, (uintptr_t)exchange);
}
static inline intptr_t mi_atomic_iread(volatile intptr_t* p) {
@ -76,49 +122,40 @@ static inline intptr_t mi_atomic_iread(volatile intptr_t* p) {
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <intrin.h>
#if (MI_INTPTR_SIZE==8)
#ifdef _WIN64
typedef LONG64 msc_intptr_t;
#define RC64(f) f##64
#else
typedef LONG msc_intptr_t;
#define RC64(f) f
#endif
static inline uintptr_t mi_atomic_increment(volatile uintptr_t* p) {
return (uintptr_t)RC64(_InterlockedIncrement)((volatile msc_intptr_t*)p);
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add) {
return (intptr_t)RC64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
}
static inline uint32_t mi_atomic_increment32(volatile uint32_t* p) {
return (uint32_t)_InterlockedIncrement((volatile LONG*)p);
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
return (expected == RC64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)expected));
}
static inline uintptr_t mi_atomic_decrement(volatile uintptr_t* p) {
return (uintptr_t)RC64(_InterlockedDecrement)((volatile msc_intptr_t*)p);
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
return mi_atomic_cas_strong(p,desired,expected);
}
static inline uintptr_t mi_atomic_subtract(volatile uintptr_t* p, uintptr_t sub) {
return (uintptr_t)RC64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, -((msc_intptr_t)sub)) - sub;
}
static inline uint32_t mi_atomic_subtract32(volatile uint32_t* p, uint32_t sub) {
return (uint32_t)_InterlockedExchangeAdd((volatile LONG*)p, -((LONG)sub)) - sub;
}
static inline bool mi_atomic_compare_exchange32(volatile uint32_t* p, uint32_t exchange, uint32_t compare) {
return ((int32_t)compare == _InterlockedCompareExchange((volatile LONG*)p, (LONG)exchange, (LONG)compare));
}
static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t exchange, uintptr_t compare) {
return (compare == RC64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange, (msc_intptr_t)compare));
}
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange) {
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) {
return (uintptr_t)RC64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange);
}
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p) {
static inline uintptr_t mi_atomic_read(volatile _Atomic(uintptr_t) const* p) {
return *p;
}
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x) {
*p = x;
static inline uintptr_t mi_atomic_read_relaxed(volatile _Atomic(uintptr_t) const* p) {
return mi_atomic_read(p);
}
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
mi_atomic_exchange(p,x);
}
static inline void mi_atomic_yield(void) {
YieldProcessor();
}
static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add) {
#if (MI_INTPTR_SIZE==8)
return _InterlockedExchangeAdd64(p, add) + add;
static inline void mi_atomic_add64(volatile _Atomic(int64_t)* p, int64_t add) {
#ifdef _WIN64
mi_atomic_add(p,add);
#else
int64_t current;
int64_t sum;
@ -126,62 +163,46 @@ static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add) {
current = *p;
sum = current + add;
} while (_InterlockedCompareExchange64(p, sum, current) != current);
return sum;
#endif
}
#else
#ifdef __cplusplus
#include <atomic>
#define MI_USING_STD using namespace std;
#define _Atomic(tp) atomic<tp>
#else
#include <stdatomic.h>
#define MI_USING_STD
#endif
static inline uintptr_t mi_atomic_increment(volatile uintptr_t* p) {
static inline void mi_atomic_add64(volatile int64_t* p, int64_t add) {
MI_USING_STD
return atomic_fetch_add_explicit((volatile atomic_uintptr_t*)p, (uintptr_t)1, memory_order_relaxed) + 1;
atomic_fetch_add_explicit((volatile _Atomic(int64_t)*)p, add, memory_order_relaxed);
}
static inline uint32_t mi_atomic_increment32(volatile uint32_t* p) {
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add) {
MI_USING_STD
return atomic_fetch_add_explicit((volatile _Atomic(uint32_t)*)p, (uint32_t)1, memory_order_relaxed) + 1;
return atomic_fetch_add_explicit(p, add, memory_order_relaxed);
}
static inline uintptr_t mi_atomic_decrement(volatile uintptr_t* p) {
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
MI_USING_STD
return atomic_fetch_sub_explicit((volatile atomic_uintptr_t*)p, (uintptr_t)1, memory_order_relaxed) - 1;
return atomic_compare_exchange_weak_explicit(p, &expected, desired, memory_order_release, memory_order_relaxed);
}
static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add) {
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
MI_USING_STD
return atomic_fetch_add_explicit((volatile _Atomic(int64_t)*)p, add, memory_order_relaxed) + add;
return atomic_compare_exchange_strong_explicit(p, &expected, desired, memory_order_acq_rel, memory_order_relaxed);
}
static inline uintptr_t mi_atomic_subtract(volatile uintptr_t* p, uintptr_t sub) {
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) {
MI_USING_STD
return atomic_fetch_sub_explicit((volatile atomic_uintptr_t*)p, sub, memory_order_relaxed) - sub;
return atomic_exchange_explicit(p, exchange, memory_order_acq_rel);
}
static inline uint32_t mi_atomic_subtract32(volatile uint32_t* p, uint32_t sub) {
static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p) {
MI_USING_STD
return atomic_fetch_sub_explicit((volatile _Atomic(uint32_t)*)p, sub, memory_order_relaxed) - sub;
return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_relaxed);
}
static inline bool mi_atomic_compare_exchange32(volatile uint32_t* p, uint32_t exchange, uint32_t compare) {
static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p) {
MI_USING_STD
return atomic_compare_exchange_weak_explicit((volatile _Atomic(uint32_t)*)p, &compare, exchange, memory_order_release, memory_order_relaxed);
return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_acquire);
}
static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t exchange, uintptr_t compare) {
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
MI_USING_STD
return atomic_compare_exchange_weak_explicit((volatile atomic_uintptr_t*)p, &compare, exchange, memory_order_release, memory_order_relaxed);
}
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange) {
MI_USING_STD
return atomic_exchange_explicit((volatile atomic_uintptr_t*)p, exchange, memory_order_acquire);
}
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p) {
MI_USING_STD
return atomic_load_explicit((volatile atomic_uintptr_t*)p, memory_order_relaxed);
}
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x) {
MI_USING_STD
return atomic_store_explicit((volatile atomic_uintptr_t*)p, x, memory_order_relaxed);
return atomic_store_explicit(p, x, memory_order_release);
}
#if defined(__cplusplus)

View file

@ -27,6 +27,7 @@ void _mi_error_message(const char* fmt, ...);
void _mi_warning_message(const char* fmt, ...);
void _mi_verbose_message(const char* fmt, ...);
void _mi_trace_message(const char* fmt, ...);
void _mi_options_init(void);
// "init.c"
extern mi_stats_t _mi_stats_main;

View file

@ -10,6 +10,7 @@ terms of the MIT license. A copy of the license can be found in the file
#include <stddef.h> // ptrdiff_t
#include <stdint.h> // uintptr_t, uint16_t, etc
#include <mimalloc-atomic.h> // _Atomic
// ------------------------------------------------------
// Variants
@ -177,8 +178,8 @@ typedef struct mi_page_s {
size_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
volatile uintptr_t thread_freed; // at least this number of blocks are in `thread_free`
volatile mi_thread_free_t thread_free; // list of deferred free blocks freed by other threads
volatile _Atomic(uintptr_t) thread_freed; // at least this number of blocks are in `thread_free`
volatile _Atomic(mi_thread_free_t) thread_free; // list of deferred free blocks freed by other threads
// less accessed info
size_t block_size; // size available in each block (always `>0`)
@ -208,7 +209,7 @@ typedef enum mi_page_kind_e {
typedef struct mi_segment_s {
struct mi_segment_s* next;
struct mi_segment_s* prev;
volatile struct mi_segment_s* abandoned_next;
volatile _Atomic(struct mi_segment_s*) abandoned_next;
size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
size_t used; // count of pages in use (`used <= capacity`)
size_t capacity; // count of available pages (`#free + used`)
@ -219,7 +220,7 @@ typedef struct mi_segment_s {
// layout like this to optimize access in `mi_free`
size_t page_shift; // `1 << page_shift` == the page sizes == `page->block_size * page->reserved` (unless the first page, then `-segment_info_size`).
volatile uintptr_t thread_id; // unique id of the thread owning this segment
volatile _Atomic(uintptr_t) thread_id; // unique id of the thread owning this segment
mi_page_kind_t page_kind; // kind of pages: small, large, or huge
mi_page_t pages[1]; // up to `MI_SMALL_PAGES_PER_SEGMENT` pages
} mi_segment_t;
@ -255,7 +256,7 @@ struct mi_heap_s {
mi_tld_t* tld;
mi_page_t* pages_free_direct[MI_SMALL_WSIZE_MAX + 2]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
volatile mi_block_t* thread_delayed_free;
volatile _Atomic(mi_block_t*) thread_delayed_free;
uintptr_t thread_id; // thread this heap belongs too
uintptr_t cookie;
uintptr_t random; // random number used for secure allocation