Merge branch 'dev-steal' into dev

This commit is contained in:
Daan 2024-11-25 19:28:35 -08:00
commit 9b7537755a
8 changed files with 266 additions and 32 deletions

View file

@ -116,7 +116,7 @@
<SDLCheck>true</SDLCheck>
<ConformanceMode>Default</ConformanceMode>
<AdditionalIncludeDirectories>../../include</AdditionalIncludeDirectories>
<PreprocessorDefinitions>MI_DEBUG=4;MI_GUARDED=1;%(PreprocessorDefinitions);</PreprocessorDefinitions>
<PreprocessorDefinitions>MI_DEBUG=3;MI_GUARDED=0;%(PreprocessorDefinitions);</PreprocessorDefinitions>
<CompileAs>CompileAsCpp</CompileAs>
<SupportJustMyCode>false</SupportJustMyCode>
<LanguageStandard>stdcpp20</LanguageStandard>

View file

@ -148,6 +148,7 @@ typedef void (mi_cdecl mi_error_fun)(int err, void* arg);
mi_decl_export void mi_register_error(mi_error_fun* fun, void* arg);
mi_decl_export void mi_collect(bool force) mi_attr_noexcept;
mi_decl_export void mi_collect_reduce(size_t target_thread_owned) mi_attr_noexcept;
mi_decl_export int mi_version(void) mi_attr_noexcept;
mi_decl_export void mi_stats_reset(void) mi_attr_noexcept;
mi_decl_export void mi_stats_merge(void) mi_attr_noexcept;
@ -377,6 +378,7 @@ typedef enum mi_option_e {
mi_option_guarded_precise, // disregard minimal alignment requirement to always place guarded blocks exactly in front of a guard page (=0)
mi_option_guarded_sample_rate, // 1 out of N allocations in the min/max range will be guarded (=1000)
mi_option_guarded_sample_seed, // can be set to allow for a (more) deterministic re-execution when a guard page is triggered (=0)
mi_option_target_segments_per_thread, // experimental (=0)
_mi_option_last,
// legacy option names
mi_option_large_os_pages = mi_option_allow_large_os_pages,

View file

@ -178,6 +178,8 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; /
void _mi_page_unfull(mi_page_t* page);
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
void _mi_page_force_abandon(mi_page_t* page);
void _mi_heap_delayed_free_all(mi_heap_t* heap);
bool _mi_heap_delayed_free_partial(mi_heap_t* heap);
void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
@ -625,9 +627,9 @@ static inline bool mi_heap_malloc_use_guarded(mi_heap_t* heap, size_t size) {
}
else {
// failed size criteria, rewind count (but don't write to an empty heap)
if (heap->guarded_sample_rate != 0) { heap->guarded_sample_count = 1; }
if (heap->guarded_sample_rate != 0) { heap->guarded_sample_count = 1; }
return false;
}
}
}
mi_decl_restrict void* _mi_heap_malloc_guarded(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;

View file

@ -416,7 +416,8 @@ typedef struct mi_segment_s {
// segment fields
struct mi_segment_s* next; // must be the first (non-constant) segment field -- see `segment.c:segment_init`
struct mi_segment_s* prev;
bool was_reclaimed; // true if it was reclaimed (used to limit on-free reclamation)
bool was_reclaimed; // true if it was reclaimed (used to limit reclaim-on-free reclamation)
bool dont_free; // can be temporarily true to ensure the segment is not freed
size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
size_t abandoned_visits; // count how often this segment is visited for reclaiming (to force reclaim if it is too long)

View file

@ -65,6 +65,7 @@ typedef struct mi_option_desc_s {
#define MI_DEFAULT_ARENA_EAGER_COMMIT 2
#endif
// in KiB
#ifndef MI_DEFAULT_ARENA_RESERVE
#if (MI_INTPTR_SIZE>4)
#define MI_DEFAULT_ARENA_RESERVE 1024L*1024L
@ -156,6 +157,7 @@ static mi_option_desc_t options[_mi_option_last] =
{ MI_DEFAULT_GUARDED_SAMPLE_RATE,
UNINIT, MI_OPTION(guarded_sample_rate)}, // 1 out of N allocations in the min/max range will be guarded (=4000)
{ 0, UNINIT, MI_OPTION(guarded_sample_seed)},
{ 0, UNINIT, MI_OPTION(target_segments_per_thread) }, // abandon segments beyond this point, or 0 to disable.
};
static void mi_option_init(mi_option_desc_t* desc);

View file

@ -259,8 +259,16 @@ static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_
heap->page_count++;
}
static void mi_page_queue_move_to_front(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_t* page) {
mi_assert_internal(mi_page_heap(page) == heap);
mi_assert_internal(mi_page_queue_contains(queue, page));
if (queue->first == page) return;
mi_page_queue_remove(queue, page);
mi_page_queue_push(heap, queue, page);
mi_assert_internal(queue->first == page);
}
static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* from, mi_page_t* page) {
static void mi_page_queue_enqueue_from_ex(mi_page_queue_t* to, mi_page_queue_t* from, bool enqueue_at_end, mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(mi_page_queue_contains(from, page));
mi_assert_expensive(!mi_page_queue_contains(to, page));
@ -273,6 +281,8 @@ static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* fro
(mi_page_is_huge(page) && mi_page_queue_is_full(to)));
mi_heap_t* heap = mi_page_heap(page);
// delete from `from`
if (page->prev != NULL) page->prev->next = page->next;
if (page->next != NULL) page->next->prev = page->prev;
if (page == from->last) from->last = page->prev;
@ -283,22 +293,59 @@ static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* fro
mi_heap_queue_first_update(heap, from);
}
page->prev = to->last;
page->next = NULL;
if (to->last != NULL) {
mi_assert_internal(heap == mi_page_heap(to->last));
to->last->next = page;
to->last = page;
// insert into `to`
if (enqueue_at_end) {
// enqueue at the end
page->prev = to->last;
page->next = NULL;
if (to->last != NULL) {
mi_assert_internal(heap == mi_page_heap(to->last));
to->last->next = page;
to->last = page;
}
else {
to->first = page;
to->last = page;
mi_heap_queue_first_update(heap, to);
}
}
else {
to->first = page;
to->last = page;
mi_heap_queue_first_update(heap, to);
if (to->first != NULL) {
// enqueue at 2nd place
mi_assert_internal(heap == mi_page_heap(to->first));
mi_page_t* next = to->first->next;
page->prev = to->first;
page->next = next;
to->first->next = page;
if (next != NULL) {
next->prev = page;
}
else {
to->last = page;
}
}
else {
// enqueue at the head (singleton list)
page->prev = NULL;
page->next = NULL;
to->first = page;
to->last = page;
mi_heap_queue_first_update(heap, to);
}
}
mi_page_set_in_full(page, mi_page_queue_is_full(to));
}
static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* from, mi_page_t* page) {
mi_page_queue_enqueue_from_ex(to, from, true /* enqueue at the end */, page);
}
static void mi_page_queue_enqueue_from_full(mi_page_queue_t* to, mi_page_queue_t* from, mi_page_t* page) {
// note: we could insert at the front to increase reuse, but it slows down certain benchmarks (like `alloc-test`)
mi_page_queue_enqueue_from_ex(to, from, false /* enqueue at the end of the `to` queue? */, page);
}
// Only called from `mi_heap_absorb`.
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append) {
mi_assert_internal(mi_heap_contains_queue(heap,pq));

View file

@ -357,7 +357,7 @@ void _mi_page_unfull(mi_page_t* page) {
mi_page_set_in_full(page, false); // to get the right queue
mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
mi_page_set_in_full(page, true);
mi_page_queue_enqueue_from(pq, pqfull, page);
mi_page_queue_enqueue_from_full(pq, pqfull, page);
}
static void mi_page_to_full(mi_page_t* page, mi_page_queue_t* pq) {
@ -403,6 +403,27 @@ void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) {
_mi_segment_page_abandon(page,segments_tld);
}
// force abandon a page
void _mi_page_force_abandon(mi_page_t* page) {
mi_heap_t* heap = mi_page_heap(page);
// mark page as not using delayed free
_mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
// ensure this page is no longer in the heap delayed free list
_mi_heap_delayed_free_all(heap);
// We can still access the page meta-info even if it is freed as we ensure
// in `mi_segment_force_abandon` that the segment is not freed (yet)
if (page->capacity == 0) return; // it may have been freed now
// and now unlink it from the page queue and abandon (or free)
mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
if (mi_page_all_free(page)) {
_mi_page_free(page, pq, false);
}
else {
_mi_page_abandon(page, pq);
}
}
// Free a page with no more free blocks
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) {
@ -448,6 +469,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
// how to check this efficiently though...
// for now, we don't retire if it is the only page left of this size class.
mi_page_queue_t* pq = mi_page_queue_of(page);
#if MI_RETIRE_CYCLES > 0
const size_t bsize = mi_page_block_size(page);
if mi_likely( /* bsize < MI_MAX_RETIRE_SIZE && */ !mi_page_queue_is_special(pq)) { // not full or huge queue?
if (pq->last==page && pq->first==page) { // the only page in the queue?
@ -463,7 +485,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
return; // don't free after all
}
}
#endif
_mi_page_free(page, pq, false);
}
@ -709,6 +731,17 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
Find pages with free blocks
-------------------------------------------------------------*/
// search for a best next page to use for at most N pages (often cut short if immediate blocks are available)
#define MI_MAX_CANDIDATE_SEARCH (8)
// is the page not yet used up to its reserved space?
static bool mi_page_is_expandable(const mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_internal(page->capacity <= page->reserved);
return (page->capacity < page->reserved);
}
// Find a page with free blocks of `page->block_size`.
static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* pq, bool first_try)
{
@ -716,39 +749,76 @@ static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* p
#if MI_STAT
size_t count = 0;
#endif
size_t candidate_count = 0; // we reset this on the first candidate to limit the search
mi_page_t* page_candidate = NULL; // a page with free space
mi_page_t* page = pq->first;
while (page != NULL)
{
mi_page_t* next = page->next; // remember next
#if MI_STAT
count++;
#endif
candidate_count++;
// 0. collect freed blocks by us and other threads
// collect freed blocks by us and other threads
_mi_page_free_collect(page, false);
// 1. if the page contains free blocks, we are done
if (mi_page_immediate_available(page)) {
#if MI_MAX_CANDIDATE_SEARCH > 1
// search up to N pages for a best candidate
// is the local free list non-empty?
const bool immediate_available = mi_page_immediate_available(page);
// if the page is completely full, move it to the `mi_pages_full`
// queue so we don't visit long-lived pages too often.
if (!immediate_available && !mi_page_is_expandable(page)) {
mi_assert_internal(!mi_page_is_in_full(page) && !mi_page_immediate_available(page));
mi_page_to_full(page, pq);
}
else {
// the page has free space, make it a candidate
// we prefer non-expandable pages with high usage as candidates (to reduce commit, and increase chances of free-ing up pages)
if (page_candidate == NULL) {
page_candidate = page;
candidate_count = 0;
}
else if (/* !mi_page_is_expandable(page) && */ page->used >= page_candidate->used) {
page_candidate = page;
}
// if we find a non-expandable candidate, or searched for N pages, return with the best candidate
if (immediate_available || candidate_count > MI_MAX_CANDIDATE_SEARCH) {
mi_assert_internal(page_candidate!=NULL);
break;
}
}
#else
// first-fit algorithm
// If the page contains free blocks, we are done
if (mi_page_immediate_available(page) || mi_page_is_expandable(page)) {
break; // pick this one
}
// 2. Try to extend
if (page->capacity < page->reserved) {
mi_page_extend_free(heap, page, heap->tld);
mi_assert_internal(mi_page_immediate_available(page));
break;
}
// 3. If the page is completely full, move it to the `mi_pages_full`
// If the page is completely full, move it to the `mi_pages_full`
// queue so we don't visit long-lived pages too often.
mi_assert_internal(!mi_page_is_in_full(page) && !mi_page_immediate_available(page));
mi_page_to_full(page, pq);
#endif
page = next;
} // for each page
mi_heap_stat_counter_increase(heap, searches, count);
// set the page to the best candidate
if (page_candidate != NULL) {
page = page_candidate;
}
if (page != NULL && !mi_page_immediate_available(page)) {
mi_assert_internal(mi_page_is_expandable(page));
mi_page_extend_free(heap, page, heap->tld);
}
if (page == NULL) {
_mi_heap_collect_retired(heap, false); // perhaps make a page available
page = mi_page_fresh(heap, pq);
@ -758,10 +828,14 @@ static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* p
}
}
else {
mi_assert(pq->first == page);
// move the page to the front of the queue
mi_page_queue_move_to_front(heap, pq, page);
page->retire_expire = 0;
// _mi_heap_collect_retired(heap, false); // update retire counts; note: increases rss on MemoryLoad bench so don't do this
}
mi_assert_internal(page == NULL || mi_page_immediate_available(page));
return page;
}
@ -769,7 +843,9 @@ static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* p
// Find a page with free blocks of `size`.
static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) {
mi_page_queue_t* pq = mi_page_queue(heap,size);
mi_page_queue_t* pq = mi_page_queue(heap, size);
// check the first page: we even do this with candidate search or otherwise we re-search every time
mi_page_t* page = pq->first;
if (page != NULL) {
#if (MI_SECURE>=3) // in secure mode, we extend half the time to increase randomness
@ -788,6 +864,7 @@ static inline mi_page_t* mi_find_free_page(mi_heap_t* heap, size_t size) {
return page; // fast path
}
}
return mi_page_queue_find_free_ex(heap, pq, true);
}

View file

@ -652,6 +652,10 @@ static mi_segment_t* mi_segment_alloc(size_t required, mi_page_kind_t page_kind,
static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
MI_UNUSED(force);
mi_assert(segment != NULL);
// in `mi_segment_force_abandon` we set this to true to ensure the segment's memory stays valid
if (segment->dont_free) return;
// don't purge as we are freeing now
mi_segment_remove_all_purges(segment, false /* don't force as we are about to free */, tld);
mi_segment_remove_from_free_queue(segment, tld);
@ -952,6 +956,9 @@ bool _mi_segment_attempt_reclaim(mi_heap_t* heap, mi_segment_t* segment) {
if (mi_atomic_load_relaxed(&segment->thread_id) != 0) return false; // it is not abandoned
if (segment->subproc != heap->tld->segments.subproc) return false; // only reclaim within the same subprocess
if (!_mi_heap_memid_is_suitable(heap,segment->memid)) return false; // don't reclaim between exclusive and non-exclusive arena's
const long target = _mi_option_get_fast(mi_option_target_segments_per_thread);
if (target > 0 && (size_t)target <= heap->tld->segments.count) return false; // don't reclaim if going above the target count
// don't reclaim more from a `free` call than half the current segments
// this is to prevent a pure free-ing thread to start owning too many segments
// (but not for out-of-arena segments as that is the main way to be reclaimed for those)
@ -976,6 +983,13 @@ void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) {
_mi_arena_field_cursor_done(&current);
}
static bool segment_count_is_within_target(mi_segments_tld_t* tld, size_t* ptarget) {
const size_t target = (size_t)mi_option_get_clamp(mi_option_target_segments_per_thread, 0, 1024);
if (ptarget != NULL) { *ptarget = target; }
return (target == 0 || tld->count < target);
}
static long mi_segment_get_reclaim_tries(mi_segments_tld_t* tld) {
// limit the tries to 10% (default) of the abandoned segments with at least 8 and at most 1024 tries.
const size_t perc = (size_t)mi_option_get_clamp(mi_option_max_segment_reclaim, 0, 100);
@ -998,7 +1012,7 @@ static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size,
mi_segment_t* segment = NULL;
mi_arena_field_cursor_t current;
_mi_arena_field_cursor_init(heap, tld->subproc, false /* non-blocking */, &current);
while ((max_tries-- > 0) && ((segment = _mi_arena_segment_clear_abandoned_next(&current)) != NULL))
while (segment_count_is_within_target(tld,NULL) && (max_tries-- > 0) && ((segment = _mi_arena_segment_clear_abandoned_next(&current)) != NULL))
{
mi_assert(segment->subproc == heap->tld->segments.subproc); // cursor only visits segments in our sub-process
segment->abandoned_visits++;
@ -1023,8 +1037,8 @@ static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size,
result = mi_segment_reclaim(segment, heap, block_size, reclaimed, tld);
break;
}
else if (segment->abandoned_visits >= 3 && is_suitable) {
// always reclaim on 3rd visit to limit the list length.
else if (segment->abandoned_visits > 3 && is_suitable) {
// always reclaim on 3rd visit to limit the abandoned segment count.
mi_segment_reclaim(segment, heap, 0, NULL, tld);
}
else {
@ -1038,6 +1052,92 @@ static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size,
}
/* -----------------------------------------------------------
Force abandon a segment that is in use by our thread
----------------------------------------------------------- */
// force abandon a segment
static void mi_segment_force_abandon(mi_segment_t* segment, mi_segments_tld_t* tld)
{
mi_assert_internal(segment->abandoned < segment->used);
mi_assert_internal(!segment->dont_free);
// ensure the segment does not get free'd underneath us (so we can check if a page has been freed in `mi_page_force_abandon`)
segment->dont_free = true;
// for all pages
for (size_t i = 0; i < segment->capacity; i++) {
mi_page_t* page = &segment->pages[i];
if (page->segment_in_use) {
// abandon the page if it is still in-use (this will free the page if possible as well (but not our segment))
mi_assert_internal(segment->used > 0);
if (segment->used == segment->abandoned+1) {
// the last page.. abandon and return as the segment will be abandoned after this
// and we should no longer access it.
segment->dont_free = false;
_mi_page_force_abandon(page);
return;
}
else {
// abandon and continue
_mi_page_force_abandon(page);
}
}
}
segment->dont_free = false;
mi_assert(segment->used == segment->abandoned);
mi_assert(segment->used == 0);
if (segment->used == 0) { // paranoia
// all free now
mi_segment_free(segment, false, tld);
}
else {
// perform delayed purges
mi_pages_try_purge(false /* force? */, tld);
}
}
// try abandon segments.
// this should be called from `reclaim_or_alloc` so we know all segments are (about) fully in use.
static void mi_segments_try_abandon_to_target(mi_heap_t* heap, size_t target, mi_segments_tld_t* tld) {
if (target <= 1) return;
const size_t min_target = (target > 4 ? (target*3)/4 : target); // 75%
// todo: we should maintain a list of segments per thread; for now, only consider segments from the heap full pages
for (int i = 0; i < 64 && tld->count >= min_target; i++) {
mi_page_t* page = heap->pages[MI_BIN_FULL].first;
while (page != NULL && mi_page_is_huge(page)) {
page = page->next;
}
if (page==NULL) {
break;
}
mi_segment_t* segment = _mi_page_segment(page);
mi_segment_force_abandon(segment, tld);
mi_assert_internal(page != heap->pages[MI_BIN_FULL].first); // as it is just abandoned
}
}
// try abandon segments.
// this should be called from `reclaim_or_alloc` so we know all segments are (about) fully in use.
static void mi_segments_try_abandon(mi_heap_t* heap, mi_segments_tld_t* tld) {
// we call this when we are about to add a fresh segment so we should be under our target segment count.
size_t target = 0;
if (segment_count_is_within_target(tld, &target)) return;
mi_segments_try_abandon_to_target(heap, target, tld);
}
void mi_collect_reduce(size_t target_size) mi_attr_noexcept {
mi_collect(true);
mi_heap_t* heap = mi_heap_get_default();
mi_segments_tld_t* tld = &heap->tld->segments;
size_t target = target_size / MI_SEGMENT_SIZE;
if (target == 0) {
target = (size_t)mi_option_get_clamp(mi_option_target_segments_per_thread, 1, 1024);
}
mi_segments_try_abandon_to_target(heap, target, tld);
}
/* -----------------------------------------------------------
Reclaim or allocate
----------------------------------------------------------- */
@ -1047,6 +1147,9 @@ static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t block_s
mi_assert_internal(page_kind <= MI_PAGE_LARGE);
mi_assert_internal(block_size <= MI_LARGE_OBJ_SIZE_MAX);
// try to abandon some segments to increase reuse between threads
mi_segments_try_abandon(heap,tld);
// 1. try to reclaim an abandoned segment
bool reclaimed;
mi_segment_t* segment = mi_segment_try_reclaim(heap, block_size, page_kind, &reclaimed, tld);