merge from dev

This commit is contained in:
Daan Leijen 2022-12-19 17:08:45 -08:00
commit 92ffc25d79
65 changed files with 793 additions and 741 deletions

View file

@ -14,7 +14,7 @@ terms of the MIT license. A copy of the license can be found in the file
#ifdef _MSC_VER
#pragma warning(disable:4214) // bitfield is not int
#endif
#endif
// Minimal alignment necessary. On most platforms 16 bytes are needed
// due to SSE registers for example. This must be at least `sizeof(void*)`
@ -67,7 +67,7 @@ terms of the MIT license. A copy of the license can be found in the file
// Encoded free lists allow detection of corrupted free lists
// and can detect buffer overflows, modify after free, and double `free`s.
#if (MI_SECURE>=3 || MI_DEBUG>=1)
#define MI_ENCODE_FREELIST 1
#define MI_ENCODE_FREELIST 1
#endif
@ -255,39 +255,39 @@ typedef uintptr_t mi_thread_free_t;
// We don't count `freed` (as |free|) but use `used` to reduce
// the number of memory accesses in the `mi_page_all_free` function(s).
//
// Notes:
// Notes:
// - Access is optimized for `mi_free` and `mi_page_alloc` (in `alloc.c`)
// - Using `uint16_t` does not seem to slow things down
// - The size is 8 words on 64-bit which helps the page index calculations
// (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10
// (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10
// and 12 are still good for address calculation)
// - To limit the structure size, the `xblock_size` is 32-bits only; for
// - To limit the structure size, the `xblock_size` is 32-bits only; for
// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size
// - `thread_free` uses the bottom bits as a delayed-free flags to optimize
// concurrent frees where only the first concurrent free adds to the owning
// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`).
// The invariant is that no-delayed-free is only set if there is
// at least one block that will be added, or as already been added, to
// at least one block that will be added, or as already been added, to
// the owning heap `thread_delayed_free` list. This guarantees that pages
// will be freed correctly even if only other threads free blocks.
typedef struct mi_page_s {
// "owned" by the segment
uint32_t slice_count; // slices in this page (0 if not a page)
uint32_t slice_offset; // distance from the actual page data slice (0 if a page)
uint8_t is_reset : 1; // `true` if the page memory was reset
uint8_t is_committed : 1; // `true` if the page virtual memory is committed
uint8_t is_zero_init : 1; // `true` if the page was zero initialized
uint8_t is_reset : 1; // `true` if the page memory was reset
uint8_t is_committed : 1; // `true` if the page virtual memory is committed
uint8_t is_zero_init : 1; // `true` if the page was zero initialized
// layout like this to optimize access in `mi_malloc` and `mi_free`
uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear`
uint16_t reserved; // number of blocks reserved in memory
mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits)
uint8_t is_zero : 1; // `true` if the blocks in the free list are zero initialized
uint8_t retire_expire : 7; // expiration count for retired blocks
uint8_t is_zero : 1; // `true` if the blocks in the free list are zero initialized
uint8_t retire_expire : 7; // expiration count for retired blocks
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
uint32_t xblock_size; // size available in each block (always `>0`)
uint32_t xblock_size; // size available in each block (always `>0`)
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
#ifdef MI_ENCODE_FREELIST
@ -297,8 +297,8 @@ typedef struct mi_page_s {
_Atomic(mi_thread_free_t) xthread_free; // list of deferred free blocks freed by other threads
_Atomic(uintptr_t) xheap;
struct mi_page_s* next; // next page owned by this thread with the same `block_size`
struct mi_page_s* prev; // previous page owned by this thread with the same `block_size`
struct mi_page_s* next; // next page owned by this thread with the same `block_size`
struct mi_page_s* prev; // previous page owned by this thread with the same `block_size`
// 64-bit 9 words, 32-bit 12 words, (+2 for secure)
#if MI_INTPTR_SIZE==8