diff --git a/CMakeLists.txt b/CMakeLists.txt
index 0cc7e575..7c0f67af 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -84,6 +84,17 @@ endif()
# Process options
# -----------------------------------------------------------------------------
+# put -Wall early so other warnings can be disabled selectively
+if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang")
+ list(APPEND mi_cflags -Wall -Wextra -Wpedantic)
+endif()
+if(CMAKE_C_COMPILER_ID MATCHES "GNU")
+ list(APPEND mi_cflags -Wall -Wextra)
+endif()
+if(CMAKE_C_COMPILER_ID MATCHES "Intel")
+ list(APPEND mi_cflags -Wall)
+endif()
+
if(CMAKE_C_COMPILER_ID MATCHES "MSVC|Intel")
set(MI_USE_CXX "ON")
endif()
@@ -186,6 +197,10 @@ endif()
if(MI_SEE_ASM)
message(STATUS "Generate assembly listings (MI_SEE_ASM=ON)")
list(APPEND mi_cflags -save-temps)
+ if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang")
+ message(STATUS "No GNU Line marker")
+ list(APPEND mi_cflags -Wno-gnu-line-marker)
+ endif()
endif()
if(MI_CHECK_FULL)
@@ -279,17 +294,17 @@ endif()
# Compiler flags
if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang|GNU")
- list(APPEND mi_cflags -Wall -Wextra -Wno-unknown-pragmas -fvisibility=hidden)
+ list(APPEND mi_cflags -Wno-unknown-pragmas -fvisibility=hidden)
if(NOT MI_USE_CXX)
list(APPEND mi_cflags -Wstrict-prototypes)
endif()
if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang")
- list(APPEND mi_cflags -Wpedantic -Wno-static-in-inline)
+ list(APPEND mi_cflags -Wno-static-in-inline)
endif()
endif()
if(CMAKE_C_COMPILER_ID MATCHES "Intel")
- list(APPEND mi_cflags -Wall -fvisibility=hidden)
+ list(APPEND mi_cflags -fvisibility=hidden)
endif()
if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang|GNU|Intel" AND NOT CMAKE_SYSTEM_NAME MATCHES "Haiku")
diff --git a/doc/mimalloc-doc.h b/doc/mimalloc-doc.h
index 3e75243b..9faaa0e7 100644
--- a/doc/mimalloc-doc.h
+++ b/doc/mimalloc-doc.h
@@ -168,7 +168,7 @@ void* mi_expand(void* p, size_t newsize);
/// @returns A pointer to a block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows.
///
-/// If there is no overflow, it behaves exactly like `mi_malloc(p,count*size)`.
+/// If there is no overflow, it behaves exactly like `mi_malloc(count*size)`.
/// @see mi_calloc()
/// @see mi_zallocn()
void* mi_mallocn(size_t count, size_t size);
@@ -499,11 +499,11 @@ void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, size_t* system_m
/// \{
/// The maximum supported alignment size (currently 1MiB).
-#define MI_ALIGNMENT_MAX (1024*1024UL)
+#define MI_BLOCK_ALIGNMENT_MAX (1024*1024UL)
/// Allocate \a size bytes aligned by \a alignment.
/// @param size number of bytes to allocate.
-/// @param alignment the minimal alignment of the allocated memory. Must be less than #MI_ALIGNMENT_MAX.
+/// @param alignment the minimal alignment of the allocated memory. Must be less than #MI_BLOCK_ALIGNMENT_MAX.
/// @returns pointer to the allocated memory or \a NULL if out of memory.
/// The returned pointer is aligned by \a alignment, i.e.
/// `(uintptr_t)p % alignment == 0`.
diff --git a/ide/vs2022/mimalloc.vcxproj b/ide/vs2022/mimalloc.vcxproj
index 21a475df..33ad9cef 100644
--- a/ide/vs2022/mimalloc.vcxproj
+++ b/ide/vs2022/mimalloc.vcxproj
@@ -217,6 +217,12 @@
false
+
+ true
+ true
+ true
+ true
+
diff --git a/ide/vs2022/mimalloc.vcxproj.filters b/ide/vs2022/mimalloc.vcxproj.filters
index bb5c8ce9..a387f5a5 100644
--- a/ide/vs2022/mimalloc.vcxproj.filters
+++ b/ide/vs2022/mimalloc.vcxproj.filters
@@ -58,6 +58,9 @@
Sources
+
+ Sources
+
diff --git a/include/mimalloc/internal.h b/include/mimalloc/internal.h
index ce72a7fe..4ea2d855 100644
--- a/include/mimalloc/internal.h
+++ b/include/mimalloc/internal.h
@@ -30,7 +30,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define mi_decl_noinline __declspec(noinline)
#define mi_decl_thread __declspec(thread)
#define mi_decl_cache_align __declspec(align(MI_CACHE_LINE))
-#define mi_decl_weak
+#define mi_decl_weak
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc
#define mi_decl_noinline __attribute__((noinline))
#define mi_decl_thread __thread
@@ -40,7 +40,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define mi_decl_noinline
#define mi_decl_thread __thread // hope for the best :-)
#define mi_decl_cache_align
-#define mi_decl_weak
+#define mi_decl_weak
#endif
#if defined(__EMSCRIPTEN__) && !defined(__wasi__)
@@ -133,8 +133,8 @@ void _mi_arena_segment_mark_abandoned(mi_segment_t* segment);
size_t _mi_arena_segment_abandoned_count(void);
typedef struct mi_arena_field_cursor_s { // abstract
- mi_arena_id_t start;
- int count;
+ mi_arena_id_t start;
+ int count;
size_t bitmap_idx;
} mi_arena_field_cursor_t;
void _mi_arena_field_cursor_init(mi_heap_t* heap, mi_arena_field_cursor_t* current);
@@ -203,9 +203,9 @@ void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned`
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept;
-mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
+mi_block_t* _mi_page_ptr_unalign(const mi_page_t* page, const void* p);
bool _mi_free_delayed_block(mi_block_t* block);
-void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration
+void _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size);
// "libc.c"
@@ -437,9 +437,14 @@ static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t si
// Large aligned blocks may be aligned at N*MI_SEGMENT_SIZE (inside a huge segment > MI_SEGMENT_SIZE),
// and we need align "down" to the segment info which is `MI_SEGMENT_SIZE` bytes before it;
// therefore we align one byte before `p`.
+// We check for NULL afterwards on 64-bit systems to improve codegen for `mi_free`.
static inline mi_segment_t* _mi_ptr_segment(const void* p) {
- mi_assert_internal(p != NULL);
- return (mi_segment_t*)(((uintptr_t)p - 1) & ~MI_SEGMENT_MASK);
+ mi_segment_t* const segment = (mi_segment_t*)(((uintptr_t)p - 1) & ~MI_SEGMENT_MASK);
+ #if MI_INTPTR_SIZE <= 4
+ return (p==NULL ? NULL : segment);
+ #else
+ return ((intptr_t)segment <= 0 ? NULL : segment);
+ #endif
}
static inline mi_page_t* mi_slice_to_page(mi_slice_t* s) {
@@ -454,6 +459,7 @@ static inline mi_slice_t* mi_page_to_slice(mi_page_t* p) {
// Segment belonging to a page
static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) {
+ mi_assert_internal(page!=NULL);
mi_segment_t* segment = _mi_ptr_segment(page);
mi_assert_internal(segment == NULL || ((mi_slice_t*)page >= segment->slices && (mi_slice_t*)page < segment->slices + segment->slice_entries));
return segment;
@@ -482,31 +488,28 @@ static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const
}
// Quick page start for initialized pages
-static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
- return _mi_segment_page_start(segment, page, page_size);
+static inline uint8_t* mi_page_start(const mi_page_t* page) {
+ mi_assert_internal(page->page_start != NULL);
+ mi_assert_expensive(_mi_segment_page_start(_mi_page_segment(page),page,NULL) == page->page_start);
+ return page->page_start;
}
// Get the page containing the pointer
static inline mi_page_t* _mi_ptr_page(void* p) {
+ mi_assert_internal(p!=NULL);
return _mi_segment_page_of(_mi_ptr_segment(p), p);
}
// Get the block size of a page (special case for huge objects)
static inline size_t mi_page_block_size(const mi_page_t* page) {
- const size_t bsize = page->xblock_size;
- mi_assert_internal(bsize > 0);
- if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) {
- return bsize;
- }
- else {
- size_t psize;
- _mi_segment_page_start(_mi_page_segment(page), page, &psize);
- return psize;
- }
+ mi_assert_internal(page->block_size > 0);
+ return page->block_size;
}
static inline bool mi_page_is_huge(const mi_page_t* page) {
- return (_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
+ mi_assert_internal((page->is_huge && _mi_page_segment(page)->kind == MI_SEGMENT_HUGE) ||
+ (!page->is_huge && _mi_page_segment(page)->kind != MI_SEGMENT_HUGE));
+ return page->is_huge;
}
// Get the usable block size of a page without fixed padding.
diff --git a/include/mimalloc/types.h b/include/mimalloc/types.h
index 9d9fbb1c..e5cece08 100644
--- a/include/mimalloc/types.h
+++ b/include/mimalloc/types.h
@@ -1,5 +1,5 @@
/* ----------------------------------------------------------------------------
-Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
+Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
@@ -13,9 +13,12 @@ terms of the MIT license. A copy of the license can be found in the file
// mi_heap_t : all data for a thread-local heap, contains
// lists of all managed heap pages.
// mi_segment_t : a larger chunk of memory (32GiB) from where pages
-// are allocated.
-// mi_page_t : a mimalloc page (usually 64KiB or 512KiB) from
+// are allocated. A segment is divided in slices (64KiB) from
+// which pages are allocated.
+// mi_page_t : a "mimalloc" page (usually 64KiB or 512KiB) from
// where objects are allocated.
+// Note: we write "OS page" for OS memory pages while
+// using plain "page" for mimalloc pages (`mi_page_t`).
// --------------------------------------------------------------------------
@@ -89,10 +92,11 @@ terms of the MIT license. A copy of the license can be found in the file
#endif
-// We used to abandon huge pages but to eagerly deallocate if freed from another thread,
-// but that makes it not possible to visit them during a heap walk or include them in a
-// `mi_heap_destroy`. We therefore instead reset/decommit the huge blocks if freed from
-// another thread so most memory is available until it gets properly freed by the owning thread.
+// We used to abandon huge pages in order to eagerly deallocate it if freed from another thread.
+// Unfortunately, that makes it not possible to visit them during a heap walk or include them in a
+// `mi_heap_destroy`. We therefore instead reset/decommit the huge blocks nowadays if freed from
+// another thread so the memory becomes "virtually" available (and eventually gets properly freed by
+// the owning thread).
// #define MI_HUGE_PAGE_ABANDON 1
@@ -192,17 +196,14 @@ typedef int32_t mi_ssize_t;
#error "mimalloc internal: define more bins"
#endif
-// Maximum slice offset (15)
-#define MI_MAX_SLICE_OFFSET ((MI_ALIGNMENT_MAX / MI_SEGMENT_SLICE_SIZE) - 1)
-
-// Used as a special value to encode block sizes in 32 bits.
-#define MI_HUGE_BLOCK_SIZE ((uint32_t)(2*MI_GiB))
-
// blocks up to this size are always allocated aligned
#define MI_MAX_ALIGN_GUARANTEE (8*MI_MAX_ALIGN_SIZE)
-// Alignments over MI_ALIGNMENT_MAX are allocated in dedicated huge page segments
-#define MI_ALIGNMENT_MAX (MI_SEGMENT_SIZE >> 1)
+// Alignments over MI_BLOCK_ALIGNMENT_MAX are allocated in dedicated huge page segments
+#define MI_BLOCK_ALIGNMENT_MAX (MI_SEGMENT_SIZE >> 1)
+
+// Maximum slice count (255) for which we can find the page for interior pointers
+#define MI_MAX_SLICE_OFFSET_COUNT ((MI_BLOCK_ALIGNMENT_MAX / MI_SEGMENT_SLICE_SIZE) - 1)
// ------------------------------------------------------
@@ -227,7 +228,7 @@ typedef enum mi_delayed_e {
MI_USE_DELAYED_FREE = 0, // push on the owning heap thread delayed list
MI_DELAYED_FREEING = 1, // temporary: another thread is accessing the owning heap
MI_NO_DELAYED_FREE = 2, // optimize: push on page local thread free queue if another block is already in the heap thread delayed free list
- MI_NEVER_DELAYED_FREE = 3 // sticky, only resets on page reclaim
+ MI_NEVER_DELAYED_FREE = 3 // sticky: used for abondoned pages without a owning heap; this only resets on page reclaim
} mi_delayed_t;
@@ -266,7 +267,6 @@ typedef uintptr_t mi_thread_free_t;
// implement a monotonic heartbeat. The `thread_free` list is needed for
// avoiding atomic operations in the common case.
//
-//
// `used - |thread_free|` == actual blocks that are in use (alive)
// `used - |thread_free| + |free| + |local_free| == capacity`
//
@@ -274,16 +274,13 @@ typedef uintptr_t mi_thread_free_t;
// the number of memory accesses in the `mi_page_all_free` function(s).
//
// Notes:
-// - Access is optimized for `mi_free` and `mi_page_alloc` (in `alloc.c`)
+// - Access is optimized for `free.c:mi_free` and `alloc.c:mi_page_alloc`
// - Using `uint16_t` does not seem to slow things down
-// - The size is 8 words on 64-bit which helps the page index calculations
-// (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10
-// and 12 are still good for address calculation)
-// - To limit the structure size, the `xblock_size` is 32-bits only; for
-// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size
-// - `thread_free` uses the bottom bits as a delayed-free flags to optimize
+// - The size is 12 words on 64-bit which helps the page index calculations
+// (and 14 words on 32-bit, and encoded free lists add 2 words)
+// - `xthread_free` uses the bottom bits as a delayed-free flags to optimize
// concurrent frees where only the first concurrent free adds to the owning
-// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`).
+// heap `thread_delayed_free` list (see `free.c:mi_free_block_mt`).
// The invariant is that no-delayed-free is only set if there is
// at least one block that will be added, or as already been added, to
// the owning heap `thread_delayed_free` list. This guarantees that pages
@@ -292,20 +289,24 @@ typedef struct mi_page_s {
// "owned" by the segment
uint32_t slice_count; // slices in this page (0 if not a page)
uint32_t slice_offset; // distance from the actual page data slice (0 if a page)
- uint8_t is_committed : 1; // `true` if the page virtual memory is committed
- uint8_t is_zero_init : 1; // `true` if the page was initially zero initialized
-
+ uint8_t is_committed:1; // `true` if the page virtual memory is committed
+ uint8_t is_zero_init:1; // `true` if the page was initially zero initialized
+ uint8_t is_huge:1; // `true` if the page is in a huge segment (`segment->kind == MI_SEGMENT_HUGE`)
+ // padding
// layout like this to optimize access in `mi_malloc` and `mi_free`
uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear`
uint16_t reserved; // number of blocks reserved in memory
mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits)
- uint8_t free_is_zero : 1; // `true` if the blocks in the free list are zero initialized
- uint8_t retire_expire : 7; // expiration count for retired blocks
+ uint8_t free_is_zero:1; // `true` if the blocks in the free list are zero initialized
+ uint8_t retire_expire:7; // expiration count for retired blocks
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
- uint32_t used; // number of blocks in use (including blocks in `thread_free`)
- uint32_t xblock_size; // size available in each block (always `>0`)
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
+ uint16_t used; // number of blocks in use (including blocks in `thread_free`)
+ uint8_t block_size_shift; // if not zero, then `(1 << block_size_shift) == block_size` (only used for fast path in `free.c:_mi_page_ptr_unalign`)
+ // padding
+ size_t block_size; // size available in each block (always `>0`)
+ uint8_t* page_start; // start of the page area containing the blocks
#if (MI_ENCODE_FREELIST || MI_PADDING)
uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary
@@ -317,10 +318,8 @@ typedef struct mi_page_s {
struct mi_page_s* next; // next page owned by this thread with the same `block_size`
struct mi_page_s* prev; // previous page owned by this thread with the same `block_size`
- // 64-bit 9 words, 32-bit 12 words, (+2 for secure)
- #if MI_INTPTR_SIZE==8
- uintptr_t padding[1];
- #endif
+ // 64-bit 11 words, 32-bit 13 words, (+2 for secure)
+ void* padding[1];
} mi_page_t;
@@ -331,14 +330,15 @@ typedef struct mi_page_s {
typedef enum mi_page_kind_e {
MI_PAGE_SMALL, // small blocks go into 64KiB pages inside a segment
- MI_PAGE_MEDIUM, // medium blocks go into medium pages inside a segment
- MI_PAGE_LARGE, // larger blocks go into a page of just one block
- MI_PAGE_HUGE, // huge blocks (> 16 MiB) are put into a single page in a single segment.
+ MI_PAGE_MEDIUM, // medium blocks go into 512KiB pages inside a segment
+ MI_PAGE_LARGE, // larger blocks go into a single page spanning a whole segment
+ MI_PAGE_HUGE // a huge page is a single page in a segment of variable size
+ // used for blocks `> MI_LARGE_OBJ_SIZE_MAX` or an aligment `> MI_BLOCK_ALIGNMENT_MAX`.
} mi_page_kind_t;
typedef enum mi_segment_kind_e {
MI_SEGMENT_NORMAL, // MI_SEGMENT_SIZE size with pages inside.
- MI_SEGMENT_HUGE, // > MI_LARGE_SIZE_MAX segment with just one huge page inside.
+ MI_SEGMENT_HUGE, // segment with just one huge page inside.
} mi_segment_kind_t;
// ------------------------------------------------------
@@ -371,13 +371,17 @@ typedef mi_page_t mi_slice_t;
typedef int64_t mi_msecs_t;
+// ---------------------------------------------------------------
+// a memory id tracks the provenance of arena/OS allocated memory
+// ---------------------------------------------------------------
+
// Memory can reside in arena's, direct OS allocated, or statically allocated. The memid keeps track of this.
typedef enum mi_memkind_e {
MI_MEM_NONE, // not allocated
MI_MEM_EXTERNAL, // not owned by mimalloc but provided externally (via `mi_manage_os_memory` for example)
MI_MEM_STATIC, // allocated in a static area and should not be freed (for arena meta data for example)
MI_MEM_OS, // allocated from the OS
- MI_MEM_OS_HUGE, // allocated as huge os pages
+ MI_MEM_OS_HUGE, // allocated as huge OS pages (usually 1GiB, pinned to physical memory)
MI_MEM_OS_REMAP, // allocated in a remapable area (i.e. using `mremap`)
MI_MEM_ARENA // allocated from an arena (the usual case)
} mi_memkind_t;
@@ -394,7 +398,7 @@ typedef struct mi_memid_os_info {
typedef struct mi_memid_arena_info {
size_t block_index; // index in the arena
mi_arena_id_t id; // arena id (>= 1)
- bool is_exclusive; // the arena can only be used for specific arena allocations
+ bool is_exclusive; // this arena can only be used for specific arena allocations
} mi_memid_arena_info_t;
typedef struct mi_memid_s {
@@ -402,46 +406,56 @@ typedef struct mi_memid_s {
mi_memid_os_info_t os; // only used for MI_MEM_OS
mi_memid_arena_info_t arena; // only used for MI_MEM_ARENA
} mem;
- bool is_pinned; // `true` if we cannot decommit/reset/protect in this memory (e.g. when allocated using large OS pages)
+ bool is_pinned; // `true` if we cannot decommit/reset/protect in this memory (e.g. when allocated using large (2Mib) or huge (1GiB) OS pages)
bool initially_committed;// `true` if the memory was originally allocated as committed
bool initially_zero; // `true` if the memory was originally zero initialized
mi_memkind_t memkind;
} mi_memid_t;
-// Segments are large allocated memory blocks (8mb on 64 bit) from
-// the OS. Inside segments we allocated fixed size _pages_ that
-// contain blocks.
+// -----------------------------------------------------------------------------------------
+// Segments are large allocated memory blocks (8mb on 64 bit) from arenas or the OS.
+//
+// Inside segments we allocated fixed size mimalloc pages (`mi_page_t`) that contain blocks.
+// The start of a segment is this structure with a fixed number of slice entries (`slices`)
+// usually followed by a guard OS page and the actual allocation area with pages.
+// While a page is not allocated, we view it's data as a `mi_slice_t` (instead of a `mi_page_t`).
+// Of any free area, the first slice has the info and `slice_offset == 0`; for any subsequent
+// slices part of the area, the `slice_offset` is the byte offset back to the first slice
+// (so we can quickly find the page info on a free, `internal.h:_mi_segment_page_of`).
+// For slices, the `block_size` field is repurposed to signify if a slice is used (`1`) or not (`0`).
+// Small and medium pages use a fixed amount of slices to reduce slice fragmentation, while
+// large and huge pages span a variable amount of slices.
typedef struct mi_segment_s {
// constant fields
- mi_memid_t memid; // memory id for arena allocation
- bool allow_decommit;
- bool allow_purge;
+ mi_memid_t memid; // memory id for arena/OS allocation
+ bool allow_decommit; // can we decommmit the memory
+ bool allow_purge; // can we purge the memory (reset or decommit)
size_t segment_size;
// segment fields
- mi_msecs_t purge_expire;
- mi_commit_mask_t purge_mask;
- mi_commit_mask_t commit_mask;
+ mi_msecs_t purge_expire; // purge slices in the `purge_mask` after this time
+ mi_commit_mask_t purge_mask; // slices that can be purged
+ mi_commit_mask_t commit_mask; // slices that are currently committed
// from here is zero initialized
struct mi_segment_s* next; // the list of freed segments in the cache (must be first field, see `segment.c:mi_segment_init`)
bool was_reclaimed; // true if it was reclaimed (used to limit on-free reclamation)
size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
- size_t abandoned_visits; // count how often this segment is visited in the abandoned list (to force reclaim it it is too long)
+ size_t abandoned_visits; // count how often this segment is visited during abondoned reclamation (to force reclaim if it takes too long)
size_t used; // count of pages in use
uintptr_t cookie; // verify addresses in debug mode: `mi_ptr_cookie(segment) == segment->cookie`
size_t segment_slices; // for huge segments this may be different from `MI_SLICES_PER_SEGMENT`
- size_t segment_info_slices; // initial slices we are using segment info and possible guard pages.
+ size_t segment_info_slices; // initial count of slices that we are using for segment info and possible guard pages.
// layout like this to optimize access in `mi_free`
mi_segment_kind_t kind;
size_t slice_entries; // entries in the `slices` array, at most `MI_SLICES_PER_SEGMENT`
_Atomic(mi_threadid_t) thread_id; // unique id of the thread owning this segment
- mi_slice_t slices[MI_SLICES_PER_SEGMENT+1]; // one more for huge blocks with large alignment
+ mi_slice_t slices[MI_SLICES_PER_SEGMENT+1]; // one extra final entry for huge blocks with large alignment
} mi_segment_t;
@@ -498,8 +512,6 @@ typedef struct mi_padding_s {
// A heap owns a set of pages.
struct mi_heap_s {
mi_tld_t* tld;
- mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
- mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
_Atomic(mi_block_t*) thread_delayed_free;
mi_threadid_t thread_id; // thread this heap belongs too
mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0)
@@ -511,6 +523,8 @@ struct mi_heap_s {
size_t page_retired_max; // largest retired index into the `pages` array.
mi_heap_t* next; // list of heaps per thread
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
+ mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
+ mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
};
@@ -626,6 +640,7 @@ void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount);
#define mi_heap_stat_increase(heap,stat,amount) mi_stat_increase( (heap)->tld->stats.stat, amount)
#define mi_heap_stat_decrease(heap,stat,amount) mi_stat_decrease( (heap)->tld->stats.stat, amount)
+
// ------------------------------------------------------
// Thread Local data
// ------------------------------------------------------
diff --git a/src/alloc-aligned.c b/src/alloc-aligned.c
index 1cd809f1..0495c11d 100644
--- a/src/alloc-aligned.c
+++ b/src/alloc-aligned.c
@@ -33,7 +33,7 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t*
void* p;
size_t oversize;
- if mi_unlikely(alignment > MI_ALIGNMENT_MAX) {
+ if mi_unlikely(alignment > MI_BLOCK_ALIGNMENT_MAX) {
// use OS allocation for very large alignment and allocate inside a huge page (dedicated segment with 1 page)
// This can support alignments >= MI_SEGMENT_SIZE by ensuring the object can be aligned at a point in the
// first (and single) page such that the segment info is `MI_SEGMENT_SIZE` bytes before it (so it can be found by aligning the pointer down)
@@ -47,7 +47,7 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t*
oversize = (size <= MI_SMALL_SIZE_MAX ? MI_SMALL_SIZE_MAX + 1 /* ensure we use generic malloc path */ : size);
p = _mi_heap_malloc_zero_ex(heap, oversize, false, alignment); // the page block size should be large enough to align in the single huge page block
// zero afterwards as only the area from the aligned_p may be committed!
- if (p == NULL) return NULL;
+ if (p == NULL) return NULL;
}
else {
// otherwise over-allocate
@@ -69,13 +69,13 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t*
// todo: expand padding if overallocated ?
mi_assert_internal(mi_page_usable_block_size(_mi_ptr_page(p)) >= adjust + size);
- mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_segment(aligned_p), _mi_ptr_page(aligned_p), aligned_p));
+ mi_assert_internal(p == _mi_page_ptr_unalign(_mi_ptr_page(aligned_p), aligned_p));
mi_assert_internal(((uintptr_t)aligned_p + offset) % alignment == 0);
mi_assert_internal(mi_usable_size(aligned_p)>=size);
mi_assert_internal(mi_usable_size(p) == mi_usable_size(aligned_p)+adjust);
-
+
// now zero the block if needed
- if (alignment > MI_ALIGNMENT_MAX) {
+ if (alignment > MI_BLOCK_ALIGNMENT_MAX) {
// for the tracker, on huge aligned allocations only from the start of the large block is defined
mi_track_mem_undefined(aligned_p, size);
if (zero) {
@@ -85,7 +85,7 @@ static mi_decl_noinline void* mi_heap_malloc_zero_aligned_at_fallback(mi_heap_t*
if (p != aligned_p) {
mi_track_align(p,aligned_p,adjust,mi_usable_size(aligned_p));
- }
+ }
return aligned_p;
}
diff --git a/src/alloc.c b/src/alloc.c
index ff680a28..2a2aeb8d 100644
--- a/src/alloc.c
+++ b/src/alloc.c
@@ -1,5 +1,5 @@
/* ----------------------------------------------------------------------------
-Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
+Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
@@ -18,6 +18,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define MI_IN_ALLOC_C
#include "alloc-override.c"
+#include "free.c"
#undef MI_IN_ALLOC_C
// ------------------------------------------------------
@@ -26,16 +27,18 @@ terms of the MIT license. A copy of the license can be found in the file
// Fast allocation in a page: just pop from the free list.
// Fall back to generic allocation only if the list is empty.
-extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept {
- mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
+// Note: in release mode the (inlined) routine is about 7 instructions with a single test.
+extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept
+{
+ mi_assert_internal(page->block_size == 0 /* empty heap */ || mi_page_block_size(page) >= size);
mi_block_t* const block = page->free;
if mi_unlikely(block == NULL) {
return _mi_malloc_generic(heap, size, zero, 0);
}
mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
// pop from the free list
- page->used++;
page->free = mi_block_next(page, block);
+ page->used++;
mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
#if MI_DEBUG>3
if (page->free_is_zero) {
@@ -50,54 +53,54 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
// zero the block? note: we need to zero the full block size (issue #63)
if mi_unlikely(zero) {
- mi_assert_internal(page->xblock_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic)
- mi_assert_internal(page->xblock_size >= MI_PADDING_SIZE);
+ mi_assert_internal(page->block_size != 0); // do not call with zero'ing for huge blocks (see _mi_malloc_generic)
+ mi_assert_internal(page->block_size >= MI_PADDING_SIZE);
if (page->free_is_zero) {
block->next = 0;
- mi_track_mem_defined(block, page->xblock_size - MI_PADDING_SIZE);
+ mi_track_mem_defined(block, page->block_size - MI_PADDING_SIZE);
}
else {
- _mi_memzero_aligned(block, page->xblock_size - MI_PADDING_SIZE);
+ _mi_memzero_aligned(block, page->block_size - MI_PADDING_SIZE);
}
}
-#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
+ #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
if (!zero && !mi_page_is_huge(page)) {
memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page));
}
-#elif (MI_SECURE!=0)
+ #elif (MI_SECURE!=0)
if (!zero) { block->next = 0; } // don't leak internal data
-#endif
+ #endif
-#if (MI_STAT>0)
+ #if (MI_STAT>0)
const size_t bsize = mi_page_usable_block_size(page);
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
mi_heap_stat_increase(heap, normal, bsize);
mi_heap_stat_counter_increase(heap, normal_count, 1);
-#if (MI_STAT>1)
+ #if (MI_STAT>1)
const size_t bin = _mi_bin(bsize);
mi_heap_stat_increase(heap, normal_bins[bin], 1);
-#endif
+ #endif
}
-#endif
+ #endif
-#if MI_PADDING // && !MI_TRACK_ENABLED
+ #if MI_PADDING // && !MI_TRACK_ENABLED
mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
- #if (MI_DEBUG>=2)
- mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
- #endif
+ #if (MI_DEBUG>=2)
+ mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
+ #endif
mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess
padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
padding->delta = (uint32_t)(delta);
- #if MI_PADDING_CHECK
- if (!mi_page_is_huge(page)) {
- uint8_t* fill = (uint8_t*)padding - delta;
- const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
- for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
- }
+ #if MI_PADDING_CHECK
+ if (!mi_page_is_huge(page)) {
+ uint8_t* fill = (uint8_t*)padding - delta;
+ const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
+ for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
+ }
+ #endif
#endif
-#endif
return block;
}
@@ -112,9 +115,11 @@ static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap,
#if (MI_PADDING)
if (size == 0) { size = sizeof(void*); }
#endif
+
mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE);
void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero);
mi_track_malloc(p,size,zero);
+
#if MI_STAT>1
if (p != NULL) {
if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
@@ -190,500 +195,6 @@ mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept
}
-// ------------------------------------------------------
-// Check for double free in secure and debug mode
-// This is somewhat expensive so only enabled for secure mode 4
-// ------------------------------------------------------
-
-#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
-// linear check if the free list contains a specific element
-static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
- while (list != NULL) {
- if (elem==list) return true;
- list = mi_block_next(page, list);
- }
- return false;
-}
-
-static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
- // The decoded value is in the same page (or NULL).
- // Walk the free lists to verify positively if it is already freed
- if (mi_list_contains(page, page->free, block) ||
- mi_list_contains(page, page->local_free, block) ||
- mi_list_contains(page, mi_page_thread_free(page), block))
- {
- _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
- return true;
- }
- return false;
-}
-
-#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
-
-static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
- bool is_double_free = false;
- mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
- if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
- (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
- {
- // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
- // (continue in separate function to improve code generation)
- is_double_free = mi_check_is_double_freex(page, block);
- }
- return is_double_free;
-}
-#else
-static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
- MI_UNUSED(page);
- MI_UNUSED(block);
- return false;
-}
-#endif
-
-// ---------------------------------------------------------------------------
-// Check for heap block overflow by setting up padding at the end of the block
-// ---------------------------------------------------------------------------
-
-#if MI_PADDING // && !MI_TRACK_ENABLED
-static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
- *bsize = mi_page_usable_block_size(page);
- const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
- mi_track_mem_defined(padding,sizeof(mi_padding_t));
- *delta = padding->delta;
- uint32_t canary = padding->canary;
- uintptr_t keys[2];
- keys[0] = page->keys[0];
- keys[1] = page->keys[1];
- bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
- mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
- return ok;
-}
-
-// Return the exact usable size of a block.
-static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
- size_t bsize;
- size_t delta;
- bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
- mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
- return (ok ? bsize - delta : 0);
-}
-
-// When a non-thread-local block is freed, it becomes part of the thread delayed free
-// list that is freed later by the owning heap. If the exact usable size is too small to
-// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
-// so it will later not trigger an overflow error in `mi_free_block`.
-void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
- size_t bsize;
- size_t delta;
- bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
- mi_assert_internal(ok);
- if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
- mi_assert_internal(bsize >= min_size);
- if (bsize < min_size) return; // should never happen
- size_t new_delta = (bsize - min_size);
- mi_assert_internal(new_delta < bsize);
- mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
- mi_track_mem_defined(padding,sizeof(mi_padding_t));
- padding->delta = (uint32_t)new_delta;
- mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
-}
-#else
-static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
- MI_UNUSED(block);
- return mi_page_usable_block_size(page);
-}
-
-void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
- MI_UNUSED(page);
- MI_UNUSED(block);
- MI_UNUSED(min_size);
-}
-#endif
-
-#if MI_PADDING && MI_PADDING_CHECK
-
-static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
- size_t bsize;
- size_t delta;
- bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
- *size = *wrong = bsize;
- if (!ok) return false;
- mi_assert_internal(bsize >= delta);
- *size = bsize - delta;
- if (!mi_page_is_huge(page)) {
- uint8_t* fill = (uint8_t*)block + bsize - delta;
- const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
- mi_track_mem_defined(fill, maxpad);
- for (size_t i = 0; i < maxpad; i++) {
- if (fill[i] != MI_DEBUG_PADDING) {
- *wrong = bsize - delta + i;
- ok = false;
- break;
- }
- }
- mi_track_mem_noaccess(fill, maxpad);
- }
- return ok;
-}
-
-static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
- size_t size;
- size_t wrong;
- if (!mi_verify_padding(page,block,&size,&wrong)) {
- _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
- }
-}
-
-#else
-
-static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
- MI_UNUSED(page);
- MI_UNUSED(block);
-}
-
-#endif
-
-// only maintain stats for smaller objects if requested
-#if (MI_STAT>0)
-static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
- #if (MI_STAT < 2)
- MI_UNUSED(block);
- #endif
- mi_heap_t* const heap = mi_heap_get_default();
- const size_t bsize = mi_page_usable_block_size(page);
- #if (MI_STAT>1)
- const size_t usize = mi_page_usable_size_of(page, block);
- mi_heap_stat_decrease(heap, malloc, usize);
- #endif
- if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
- mi_heap_stat_decrease(heap, normal, bsize);
- #if (MI_STAT > 1)
- mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
- #endif
- }
- else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
- mi_heap_stat_decrease(heap, large, bsize);
- }
- else {
- mi_heap_stat_decrease(heap, huge, bsize);
- }
-}
-#else
-static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
- MI_UNUSED(page); MI_UNUSED(block);
-}
-#endif
-
-#if MI_HUGE_PAGE_ABANDON
-#if (MI_STAT>0)
-// maintain stats for huge objects
-static void mi_stat_huge_free(const mi_page_t* page) {
- mi_heap_t* const heap = mi_heap_get_default();
- const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
- if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
- mi_heap_stat_decrease(heap, large, bsize);
- }
- else {
- mi_heap_stat_decrease(heap, huge, bsize);
- }
-}
-#else
-static void mi_stat_huge_free(const mi_page_t* page) {
- MI_UNUSED(page);
-}
-#endif
-#endif
-
-// ------------------------------------------------------
-// Free
-// ------------------------------------------------------
-
-// multi-threaded free (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
-static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
-{
- // first see if the segment was abandoned and we can reclaim it
- mi_segment_t* const segment = _mi_page_segment(page);
- if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) &&
- #if MI_HUGE_PAGE_ABANDON
- segment->page_kind != MI_PAGE_HUGE &&
- #endif
- mi_atomic_load_relaxed(&segment->thread_id) == 0)
- {
- // the segment is abandoned, try to reclaim it into our heap
- mi_heap_t* heap = mi_heap_get_default();
- if (heap->tld != NULL && _mi_segment_attempt_reclaim(heap, segment)) {
- mi_assert_internal(_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
- mi_free(block); // recursively free as now it will be a local free in our heap
- return;
- }
- }
-
- // The padding check may access the non-thread-owned page for the key values.
- // that is safe as these are constant and the page won't be freed (as the block is not freed yet).
- mi_check_padding(page, block);
- _mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
-
- // huge page segments are always abandoned and can be freed immediately
- if (segment->kind == MI_SEGMENT_HUGE) {
- #if MI_HUGE_PAGE_ABANDON
- // huge page segments are always abandoned and can be freed immediately
- mi_stat_huge_free(page);
- _mi_segment_huge_page_free(segment, page, block);
- return;
- #else
- // huge pages are special as they occupy the entire segment
- // as these are large we reset the memory occupied by the page so it is available to other threads
- // (as the owning thread needs to actually free the memory later).
- _mi_segment_huge_page_reset(segment, page, block);
- #endif
- }
-
- #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
- if (segment->kind != MI_SEGMENT_HUGE) { // not for huge segments as we just reset the content
- memset(block, MI_DEBUG_FREED, mi_usable_size(block));
- }
- #endif
-
- // Try to put the block on either the page-local thread free list, or the heap delayed free list.
- mi_thread_free_t tfreex;
- bool use_delayed;
- mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
- do {
- use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
- if mi_unlikely(use_delayed) {
- // unlikely: this only happens on the first concurrent free in a page that is in the full list
- tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
- }
- else {
- // usual: directly add to page thread_free list
- mi_block_set_next(page, block, mi_tf_block(tfree));
- tfreex = mi_tf_set_block(tfree,block);
- }
- } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
-
- if mi_unlikely(use_delayed) {
- // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
- mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
- mi_assert_internal(heap != NULL);
- if (heap != NULL) {
- // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
- mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
- do {
- mi_block_set_nextx(heap,block,dfree, heap->keys);
- } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
- }
-
- // and reset the MI_DELAYED_FREEING flag
- tfree = mi_atomic_load_relaxed(&page->xthread_free);
- do {
- tfreex = tfree;
- mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
- tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
- } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
- }
-}
-
-// regular free
-static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
-{
- // and push it on the free list
- //const size_t bsize = mi_page_block_size(page);
- if mi_likely(local) {
- // owning thread can free a block directly
- if mi_unlikely(mi_check_is_double_free(page, block)) return;
- mi_check_padding(page, block);
- #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
- if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
- memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
- }
- #endif
- mi_block_set_next(page, block, page->local_free);
- page->local_free = block;
- page->used--;
- if mi_unlikely(mi_page_all_free(page)) {
- _mi_page_retire(page);
- }
- else if mi_unlikely(mi_page_is_in_full(page)) {
- _mi_page_unfull(page);
- }
- }
- else {
- _mi_free_block_mt(page,block);
- }
-}
-
-
-// Adjust a block that was allocated aligned, to the actual start of the block in the page.
-mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
- mi_assert_internal(page!=NULL && p!=NULL);
- const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
- const size_t adjust = (diff % mi_page_block_size(page));
- return (mi_block_t*)((uintptr_t)p - adjust);
-}
-
-
-void mi_decl_noinline _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
- mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
- mi_stat_free(page, block); // stat_free may access the padding
- mi_track_free_size(block, mi_page_usable_size_of(page,block));
- _mi_free_block(page, is_local, block);
-}
-
-// Get the segment data belonging to a pointer
-// This is just a single `and` in assembly but does further checks in debug mode
-// (and secure mode) if this was a valid pointer.
-static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
-{
- MI_UNUSED(msg);
- mi_assert(p != NULL);
-
-#if (MI_DEBUG>0)
- if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
- _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
- return NULL;
- }
-#endif
-
- mi_segment_t* const segment = _mi_ptr_segment(p);
- mi_assert_internal(segment != NULL);
-
-#if (MI_DEBUG>0)
- if mi_unlikely(!mi_is_in_heap_region(p)) {
- #if (MI_INTPTR_SIZE == 8 && defined(__linux__))
- if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
- #else
- {
- #endif
- _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
- "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
- if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
- _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
- }
- }
- }
-#endif
-#if (MI_DEBUG>0 || MI_SECURE>=4)
- if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
- _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
- return NULL;
- }
-#endif
-
- return segment;
-}
-
-// Free a block
-// fast path written carefully to prevent spilling on the stack
-void mi_free(void* p) mi_attr_noexcept
-{
- if mi_unlikely(p == NULL) return;
- mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
- const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
- mi_page_t* const page = _mi_segment_page_of(segment, p);
-
- if mi_likely(is_local) { // thread-local free?
- if mi_likely(page->flags.full_aligned == 0) // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
- {
- mi_block_t* const block = (mi_block_t*)p;
- if mi_unlikely(mi_check_is_double_free(page, block)) return;
- mi_check_padding(page, block);
- mi_stat_free(page, block);
- #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
- memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
- #endif
- mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned
- mi_block_set_next(page, block, page->local_free);
- page->local_free = block;
- if mi_unlikely(--page->used == 0) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page))
- _mi_page_retire(page);
- }
- }
- else {
- // page is full or contains (inner) aligned blocks; use generic path
- _mi_free_generic(segment, page, true, p);
- }
- }
- else {
- // not thread-local; use generic path
- _mi_free_generic(segment, page, false, p);
- }
-}
-
-// return true if successful
-bool _mi_free_delayed_block(mi_block_t* block) {
- // get segment and page
- const mi_segment_t* const segment = _mi_ptr_segment(block);
- mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
- mi_assert_internal(_mi_thread_id() == segment->thread_id);
- mi_page_t* const page = _mi_segment_page_of(segment, block);
-
- // Clear the no-delayed flag so delayed freeing is used again for this page.
- // This must be done before collecting the free lists on this page -- otherwise
- // some blocks may end up in the page `thread_free` list with no blocks in the
- // heap `thread_delayed_free` list which may cause the page to be never freed!
- // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
- if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
- return false;
- }
-
- // collect all other non-local frees to ensure up-to-date `used` count
- _mi_page_free_collect(page, false);
-
- // and free the block (possibly freeing the page as well since used is updated)
- _mi_free_block(page, true, block);
- return true;
-}
-
-// Bytes available in a block
-mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
- const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
- const size_t size = mi_page_usable_size_of(page, block);
- const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
- mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
- return (size - adjust);
-}
-
-static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
- if (p == NULL) return 0;
- const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
- const mi_page_t* const page = _mi_segment_page_of(segment, p);
- if mi_likely(!mi_page_has_aligned(page)) {
- const mi_block_t* block = (const mi_block_t*)p;
- return mi_page_usable_size_of(page, block);
- }
- else {
- // split out to separate routine for improved code generation
- return mi_page_usable_aligned_size_of(segment, page, p);
- }
-}
-
-mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
- return _mi_usable_size(p, "mi_usable_size");
-}
-
-
-// ------------------------------------------------------
-// Allocation extensions
-// ------------------------------------------------------
-
-void mi_free_size(void* p, size_t size) mi_attr_noexcept {
- MI_UNUSED_RELEASE(size);
- mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
- mi_free(p);
-}
-
-void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
- MI_UNUSED_RELEASE(alignment);
- mi_assert(((uintptr_t)p % alignment) == 0);
- mi_free_size(p,size);
-}
-
-void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
- MI_UNUSED_RELEASE(alignment);
- mi_assert(((uintptr_t)p % alignment) == 0);
- mi_free(p);
-}
-
mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
size_t total;
if (mi_count_size_overflow(count,size,&total)) return NULL;
@@ -885,7 +396,8 @@ char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name)
char* rname = realpath(fname, NULL);
if (rname == NULL) return NULL;
char* result = mi_heap_strdup(heap, rname);
- free(rname); // use regular free! (which may be redirected to our free but that's ok)
+ mi_cfree(rname); // use checked free (which may be redirected to our free but that's ok)
+ // note: with ASAN realpath is intercepted and mi_cfree may leak the returned pointer :-(
return result;
}
/*
diff --git a/src/free.c b/src/free.c
new file mode 100644
index 00000000..d42e3f3d
--- /dev/null
+++ b/src/free.c
@@ -0,0 +1,530 @@
+/* ----------------------------------------------------------------------------
+Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
+This is free software; you can redistribute it and/or modify it under the
+terms of the MIT license. A copy of the license can be found in the file
+"LICENSE" at the root of this distribution.
+-----------------------------------------------------------------------------*/
+#if !defined(MI_IN_ALLOC_C)
+#error "this file should be included from 'alloc.c' (so aliases can work from alloc-override)"
+// add includes help an IDE
+#include "mimalloc.h"
+#include "mimalloc/internal.h"
+#include "mimalloc/atomic.h"
+#include "mimalloc/prim.h" // _mi_prim_thread_id()
+#endif
+
+// forward declarations
+static void mi_check_padding(const mi_page_t* page, const mi_block_t* block);
+static bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block);
+static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block);
+static void mi_stat_free(const mi_page_t* page, const mi_block_t* block);
+
+
+// ------------------------------------------------------
+// Free
+// ------------------------------------------------------
+
+// forward declaration of multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
+static mi_decl_noinline void mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block);
+
+// regular free of a (thread local) block pointer
+// fast path written carefully to prevent spilling on the stack
+static inline void mi_free_block_local(mi_page_t* page, mi_block_t* block, bool track_stats, bool check_full)
+{
+ // checks
+ if mi_unlikely(mi_check_is_double_free(page, block)) return;
+ mi_check_padding(page, block);
+ if (track_stats) { mi_stat_free(page, block); }
+ #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
+ if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
+ memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
+ }
+ #endif
+ if (track_stats) { mi_track_free_size(block, mi_page_usable_size_of(page, block)); } // faster then mi_usable_size as we already know the page and that p is unaligned
+
+ // actual free: push on the local free list
+ mi_block_set_next(page, block, page->local_free);
+ page->local_free = block;
+ if mi_unlikely(--page->used == 0) {
+ _mi_page_retire(page);
+ }
+ else if mi_unlikely(check_full && mi_page_is_in_full(page)) {
+ _mi_page_unfull(page);
+ }
+}
+
+// Adjust a block that was allocated aligned, to the actual start of the block in the page.
+// note: this can be called from `mi_free_generic_mt` where a non-owning thread accesses the
+// `page_start` and `block_size` fields; however these are constant and the page won't be
+// deallocated (as the block we are freeing keeps it alive) and thus safe to read concurrently.
+mi_block_t* _mi_page_ptr_unalign(const mi_page_t* page, const void* p) {
+ mi_assert_internal(page!=NULL && p!=NULL);
+
+ size_t diff = (uint8_t*)p - page->page_start;
+ size_t adjust;
+ if mi_likely(page->block_size_shift != 0) {
+ adjust = diff & (((size_t)1 << page->block_size_shift) - 1);
+ }
+ else {
+ adjust = diff % mi_page_block_size(page);
+ }
+
+ return (mi_block_t*)((uintptr_t)p - adjust);
+}
+
+// free a local pointer (page parameter comes first for better codegen)
+static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
+ MI_UNUSED(segment);
+ mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(page, p) : (mi_block_t*)p);
+ mi_free_block_local(page, block, true /* track stats */, true /* check for a full page */);
+}
+
+// free a pointer owned by another thread (page parameter comes first for better codegen)
+static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
+ mi_block_t* const block = _mi_page_ptr_unalign(page, p); // don't check `has_aligned` flag to avoid a race (issue #865)
+ mi_free_block_mt(page, segment, block);
+}
+
+// generic free (for runtime integration)
+void mi_decl_noinline _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
+ if (is_local) mi_free_generic_local(page,segment,p);
+ else mi_free_generic_mt(page,segment,p);
+}
+
+// Get the segment data belonging to a pointer
+// This is just a single `and` in release mode but does further checks in debug mode
+// (and secure mode) to see if this was a valid pointer.
+static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
+{
+ MI_UNUSED(msg);
+
+#if (MI_DEBUG>0)
+ if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
+ _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
+ return NULL;
+ }
+#endif
+
+ mi_segment_t* const segment = _mi_ptr_segment(p);
+ if mi_unlikely(segment==NULL) return segment;
+
+#if (MI_DEBUG>0)
+ if mi_unlikely(!mi_is_in_heap_region(p)) {
+ #if (MI_INTPTR_SIZE == 8 && defined(__linux__))
+ if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
+ #else
+ {
+ #endif
+ _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
+ "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
+ if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
+ _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
+ }
+ }
+ }
+#endif
+#if (MI_DEBUG>0 || MI_SECURE>=4)
+ if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
+ _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
+ return NULL;
+ }
+#endif
+
+ return segment;
+}
+
+// Free a block
+// Fast path written carefully to prevent register spilling on the stack
+void mi_free(void* p) mi_attr_noexcept
+{
+ mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
+ if mi_unlikely(segment==NULL) return;
+
+ const bool is_local = (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
+ mi_page_t* const page = _mi_segment_page_of(segment, p);
+
+ if mi_likely(is_local) { // thread-local free?
+ if mi_likely(page->flags.full_aligned == 0) { // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
+ // thread-local, aligned, and not a full page
+ mi_block_t* const block = (mi_block_t*)p;
+ mi_free_block_local(page, block, true /* track stats */, false /* no need to check if the page is full */);
+ }
+ else {
+ // page is full or contains (inner) aligned blocks; use generic path
+ mi_free_generic_local(page, segment, p);
+ }
+ }
+ else {
+ // not thread-local; use generic path
+ mi_free_generic_mt(page, segment, p);
+ }
+}
+
+// return true if successful
+bool _mi_free_delayed_block(mi_block_t* block) {
+ // get segment and page
+ mi_assert_internal(block!=NULL);
+ const mi_segment_t* const segment = _mi_ptr_segment(block);
+ mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
+ mi_assert_internal(_mi_thread_id() == segment->thread_id);
+ mi_page_t* const page = _mi_segment_page_of(segment, block);
+
+ // Clear the no-delayed flag so delayed freeing is used again for this page.
+ // This must be done before collecting the free lists on this page -- otherwise
+ // some blocks may end up in the page `thread_free` list with no blocks in the
+ // heap `thread_delayed_free` list which may cause the page to be never freed!
+ // (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
+ if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
+ return false;
+ }
+
+ // collect all other non-local frees (move from `thread_free` to `free`) to ensure up-to-date `used` count
+ _mi_page_free_collect(page, false);
+
+ // and free the block (possibly freeing the page as well since `used` is updated)
+ mi_free_block_local(page, block, false /* stats have already been adjusted */, true /* check for a full page */);
+ return true;
+}
+
+// ------------------------------------------------------
+// Multi-threaded Free (`_mt`)
+// ------------------------------------------------------
+
+// Push a block that is owned by another thread on its page-local thread free
+// list or it's heap delayed free list. Such blocks are later collected by
+// the owning thread in `_mi_free_delayed_block`.
+static void mi_decl_noinline mi_free_block_delayed_mt( mi_page_t* page, mi_block_t* block )
+{
+ // Try to put the block on either the page-local thread free list,
+ // or the heap delayed free list (if this is the first non-local free in that page)
+ mi_thread_free_t tfreex;
+ bool use_delayed;
+ mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
+ do {
+ use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
+ if mi_unlikely(use_delayed) {
+ // unlikely: this only happens on the first concurrent free in a page that is in the full list
+ tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
+ }
+ else {
+ // usual: directly add to page thread_free list
+ mi_block_set_next(page, block, mi_tf_block(tfree));
+ tfreex = mi_tf_set_block(tfree,block);
+ }
+ } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
+
+ // If this was the first non-local free, we need to push it on the heap delayed free list instead
+ if mi_unlikely(use_delayed) {
+ // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
+ mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
+ mi_assert_internal(heap != NULL);
+ if (heap != NULL) {
+ // add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
+ mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
+ do {
+ mi_block_set_nextx(heap,block,dfree, heap->keys);
+ } while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
+ }
+
+ // and reset the MI_DELAYED_FREEING flag
+ tfree = mi_atomic_load_relaxed(&page->xthread_free);
+ do {
+ tfreex = tfree;
+ mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
+ tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
+ } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
+ }
+}
+
+// Multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
+static void mi_decl_noinline mi_free_block_mt(mi_page_t* page, mi_segment_t* segment, mi_block_t* block)
+{
+ // first see if the segment was abandoned and if we can reclaim it into our thread
+ if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) &&
+ #if MI_HUGE_PAGE_ABANDON
+ segment->page_kind != MI_PAGE_HUGE &&
+ #endif
+ mi_atomic_load_relaxed(&segment->thread_id) == 0)
+ {
+ // the segment is abandoned, try to reclaim it into our heap
+ if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) {
+ mi_assert_internal(_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
+ mi_free(block); // recursively free as now it will be a local free in our heap
+ return;
+ }
+ }
+
+ // The padding check may access the non-thread-owned page for the key values.
+ // that is safe as these are constant and the page won't be freed (as the block is not freed yet).
+ mi_check_padding(page, block);
+
+ // adjust stats (after padding check and potentially recursive `mi_free` above)
+ mi_stat_free(page, block); // stat_free may access the padding
+ mi_track_free_size(block, mi_page_usable_size_of(page,block));
+
+ // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
+ _mi_padding_shrink(page, block, sizeof(mi_block_t));
+
+ if (segment->kind == MI_SEGMENT_HUGE) {
+ #if MI_HUGE_PAGE_ABANDON
+ // huge page segments are always abandoned and can be freed immediately
+ _mi_segment_huge_page_free(segment, page, block);
+ return;
+ #else
+ // huge pages are special as they occupy the entire segment
+ // as these are large we reset the memory occupied by the page so it is available to other threads
+ // (as the owning thread needs to actually free the memory later).
+ _mi_segment_huge_page_reset(segment, page, block);
+ #endif
+ }
+ else {
+ #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
+ memset(block, MI_DEBUG_FREED, mi_usable_size(block));
+ #endif
+ }
+
+ // and finally free the actual block by pushing it on the owning heap
+ // thread_delayed free list (or heap delayed free list)
+ mi_free_block_delayed_mt(page,block);
+}
+
+
+// ------------------------------------------------------
+// Usable size
+// ------------------------------------------------------
+
+// Bytes available in a block
+static size_t mi_decl_noinline mi_page_usable_aligned_size_of(const mi_page_t* page, const void* p) mi_attr_noexcept {
+ const mi_block_t* block = _mi_page_ptr_unalign(page, p);
+ const size_t size = mi_page_usable_size_of(page, block);
+ const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
+ mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
+ return (size - adjust);
+}
+
+static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
+ const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
+ if mi_unlikely(segment==NULL) return 0;
+ const mi_page_t* const page = _mi_segment_page_of(segment, p);
+ if mi_likely(!mi_page_has_aligned(page)) {
+ const mi_block_t* block = (const mi_block_t*)p;
+ return mi_page_usable_size_of(page, block);
+ }
+ else {
+ // split out to separate routine for improved code generation
+ return mi_page_usable_aligned_size_of(page, p);
+ }
+}
+
+mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
+ return _mi_usable_size(p, "mi_usable_size");
+}
+
+
+// ------------------------------------------------------
+// Free variants
+// ------------------------------------------------------
+
+void mi_free_size(void* p, size_t size) mi_attr_noexcept {
+ MI_UNUSED_RELEASE(size);
+ mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
+ mi_free(p);
+}
+
+void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
+ MI_UNUSED_RELEASE(alignment);
+ mi_assert(((uintptr_t)p % alignment) == 0);
+ mi_free_size(p,size);
+}
+
+void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
+ MI_UNUSED_RELEASE(alignment);
+ mi_assert(((uintptr_t)p % alignment) == 0);
+ mi_free(p);
+}
+
+
+// ------------------------------------------------------
+// Check for double free in secure and debug mode
+// This is somewhat expensive so only enabled for secure mode 4
+// ------------------------------------------------------
+
+#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
+// linear check if the free list contains a specific element
+static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
+ while (list != NULL) {
+ if (elem==list) return true;
+ list = mi_block_next(page, list);
+ }
+ return false;
+}
+
+static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
+ // The decoded value is in the same page (or NULL).
+ // Walk the free lists to verify positively if it is already freed
+ if (mi_list_contains(page, page->free, block) ||
+ mi_list_contains(page, page->local_free, block) ||
+ mi_list_contains(page, mi_page_thread_free(page), block))
+ {
+ _mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
+ return true;
+ }
+ return false;
+}
+
+#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
+
+static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
+ bool is_double_free = false;
+ mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
+ if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
+ (n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
+ {
+ // Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
+ // (continue in separate function to improve code generation)
+ is_double_free = mi_check_is_double_freex(page, block);
+ }
+ return is_double_free;
+}
+#else
+static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(page);
+ MI_UNUSED(block);
+ return false;
+}
+#endif
+
+
+// ---------------------------------------------------------------------------
+// Check for heap block overflow by setting up padding at the end of the block
+// ---------------------------------------------------------------------------
+
+#if MI_PADDING // && !MI_TRACK_ENABLED
+static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
+ *bsize = mi_page_usable_block_size(page);
+ const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
+ mi_track_mem_defined(padding,sizeof(mi_padding_t));
+ *delta = padding->delta;
+ uint32_t canary = padding->canary;
+ uintptr_t keys[2];
+ keys[0] = page->keys[0];
+ keys[1] = page->keys[1];
+ bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
+ mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
+ return ok;
+}
+
+// Return the exact usable size of a block.
+static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
+ size_t bsize;
+ size_t delta;
+ bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
+ mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
+ return (ok ? bsize - delta : 0);
+}
+
+// When a non-thread-local block is freed, it becomes part of the thread delayed free
+// list that is freed later by the owning heap. If the exact usable size is too small to
+// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
+// so it will later not trigger an overflow error in `mi_free_block`.
+void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
+ size_t bsize;
+ size_t delta;
+ bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
+ mi_assert_internal(ok);
+ if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
+ mi_assert_internal(bsize >= min_size);
+ if (bsize < min_size) return; // should never happen
+ size_t new_delta = (bsize - min_size);
+ mi_assert_internal(new_delta < bsize);
+ mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
+ mi_track_mem_defined(padding,sizeof(mi_padding_t));
+ padding->delta = (uint32_t)new_delta;
+ mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
+}
+#else
+static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(block);
+ return mi_page_usable_block_size(page);
+}
+
+void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
+ MI_UNUSED(page);
+ MI_UNUSED(block);
+ MI_UNUSED(min_size);
+}
+#endif
+
+#if MI_PADDING && MI_PADDING_CHECK
+
+static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
+ size_t bsize;
+ size_t delta;
+ bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
+ *size = *wrong = bsize;
+ if (!ok) return false;
+ mi_assert_internal(bsize >= delta);
+ *size = bsize - delta;
+ if (!mi_page_is_huge(page)) {
+ uint8_t* fill = (uint8_t*)block + bsize - delta;
+ const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
+ mi_track_mem_defined(fill, maxpad);
+ for (size_t i = 0; i < maxpad; i++) {
+ if (fill[i] != MI_DEBUG_PADDING) {
+ *wrong = bsize - delta + i;
+ ok = false;
+ break;
+ }
+ }
+ mi_track_mem_noaccess(fill, maxpad);
+ }
+ return ok;
+}
+
+static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
+ size_t size;
+ size_t wrong;
+ if (!mi_verify_padding(page,block,&size,&wrong)) {
+ _mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
+ }
+}
+
+#else
+
+static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(page);
+ MI_UNUSED(block);
+}
+
+#endif
+
+// only maintain stats for smaller objects if requested
+#if (MI_STAT>0)
+static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
+ #if (MI_STAT < 2)
+ MI_UNUSED(block);
+ #endif
+ mi_heap_t* const heap = mi_heap_get_default();
+ const size_t bsize = mi_page_usable_block_size(page);
+ #if (MI_STAT>1)
+ const size_t usize = mi_page_usable_size_of(page, block);
+ mi_heap_stat_decrease(heap, malloc, usize);
+ #endif
+ if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
+ mi_heap_stat_decrease(heap, normal, bsize);
+ #if (MI_STAT > 1)
+ mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
+ #endif
+ }
+ else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
+ mi_heap_stat_decrease(heap, large, bsize);
+ }
+ else {
+ mi_heap_stat_decrease(heap, huge, bsize);
+ }
+}
+#else
+static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
+ MI_UNUSED(page); MI_UNUSED(block);
+}
+#endif
diff --git a/src/heap.c b/src/heap.c
index 58520ddf..ef989eb0 100644
--- a/src/heap.c
+++ b/src/heap.c
@@ -32,7 +32,7 @@ static bool mi_heap_visit_pages(mi_heap_t* heap, heap_page_visitor_fun* fn, void
#if MI_DEBUG>1
size_t total = heap->page_count;
size_t count = 0;
- #endif
+ #endif
for (size_t i = 0; i <= MI_BIN_FULL; i++) {
mi_page_queue_t* pq = &heap->pages[i];
@@ -120,11 +120,11 @@ static void mi_heap_collect_ex(mi_heap_t* heap, mi_collect_t collect)
{
if (heap==NULL || !mi_heap_is_initialized(heap)) return;
- const bool force = collect >= MI_FORCE;
+ const bool force = collect >= MI_FORCE;
_mi_deferred_free(heap, force);
- // note: never reclaim on collect but leave it to threads that need storage to reclaim
- const bool force_main =
+ // note: never reclaim on collect but leave it to threads that need storage to reclaim
+ const bool force_main =
#ifdef NDEBUG
collect == MI_FORCE
#else
@@ -474,8 +474,7 @@ static bool mi_heap_page_check_owned(mi_heap_t* heap, mi_page_queue_t* pq, mi_pa
MI_UNUSED(heap);
MI_UNUSED(pq);
bool* found = (bool*)vfound;
- mi_segment_t* segment = _mi_page_segment(page);
- void* start = _mi_page_start(segment, page, NULL);
+ void* start = mi_page_start(page);
void* end = (uint8_t*)start + (page->capacity * mi_page_block_size(page));
*found = (p >= start && p < end);
return (!*found); // continue if not found
@@ -521,7 +520,7 @@ static bool mi_heap_area_visit_blocks(const mi_heap_area_ex_t* xarea, mi_block_v
const size_t bsize = mi_page_block_size(page);
const size_t ubsize = mi_page_usable_block_size(page); // without padding
size_t psize;
- uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize);
+ uint8_t* pstart = _mi_segment_page_start(_mi_page_segment(page), page, &psize);
if (page->capacity == 1) {
// optimize page with one block
@@ -588,7 +587,7 @@ static bool mi_heap_visit_areas_page(mi_heap_t* heap, mi_page_queue_t* pq, mi_pa
xarea.page = page;
xarea.area.reserved = page->reserved * bsize;
xarea.area.committed = page->capacity * bsize;
- xarea.area.blocks = _mi_page_start(_mi_page_segment(page), page, NULL);
+ xarea.area.blocks = mi_page_start(page);
xarea.area.used = page->used; // number of blocks in use (#553)
xarea.area.block_size = ubsize;
xarea.area.full_block_size = bsize;
diff --git a/src/init.c b/src/init.c
index 0511e723..33161062 100644
--- a/src/init.c
+++ b/src/init.c
@@ -14,16 +14,19 @@ terms of the MIT license. A copy of the license can be found in the file
// Empty page used to initialize the small free pages array
const mi_page_t _mi_page_empty = {
- 0, false, false, false,
+ 0,
+ false, false, false, false,
0, // capacity
0, // reserved capacity
{ 0 }, // flags
false, // is_zero
0, // retire_expire
NULL, // free
- 0, // used
- 0, // xblock_size
NULL, // local_free
+ 0, // used
+ 0, // block size shift
+ 0, // block_size
+ NULL, // page_start
#if (MI_PADDING || MI_ENCODE_FREELIST)
{ 0, 0 },
#endif
@@ -84,8 +87,9 @@ const mi_page_t _mi_page_empty = {
MI_STAT_COUNT_NULL(), MI_STAT_COUNT_NULL(), \
MI_STAT_COUNT_NULL(), \
{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
- { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
- { 0, 0 }, { 0, 0 }, { 0, 0 } \
+ { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
+ { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, \
+ { 0, 0 } \
MI_STAT_COUNT_END_NULL()
@@ -111,8 +115,6 @@ const mi_page_t _mi_page_empty = {
mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
NULL,
- MI_SMALL_PAGES_EMPTY,
- MI_PAGE_QUEUES_EMPTY,
MI_ATOMIC_VAR_INIT(NULL),
0, // tid
0, // cookie
@@ -122,7 +124,9 @@ mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
0, // page count
MI_BIN_FULL, 0, // page retired min/max
NULL, // next
- false
+ false,
+ MI_SMALL_PAGES_EMPTY,
+ MI_PAGE_QUEUES_EMPTY
};
#define tld_empty_stats ((mi_stats_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,stats)))
@@ -156,8 +160,6 @@ static mi_tld_t tld_main = {
mi_heap_t _mi_heap_main = {
&tld_main,
- MI_SMALL_PAGES_EMPTY,
- MI_PAGE_QUEUES_EMPTY,
MI_ATOMIC_VAR_INIT(NULL),
0, // thread id
0, // initial cookie
@@ -167,7 +169,9 @@ mi_heap_t _mi_heap_main = {
0, // page count
MI_BIN_FULL, 0, // page retired min/max
NULL, // next heap
- false // can reclaim
+ false, // can reclaim
+ MI_SMALL_PAGES_EMPTY,
+ MI_PAGE_QUEUES_EMPTY
};
bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`.
diff --git a/src/libc.c b/src/libc.c
index f1412722..dd6b4007 100644
--- a/src/libc.c
+++ b/src/libc.c
@@ -210,7 +210,7 @@ void _mi_vsnprintf(char* buf, size_t bufsize, const char* fmt, va_list args) {
if (c == 'x' || c == 'u') {
if (numtype == 'z') x = va_arg(args, size_t);
else if (numtype == 't') x = va_arg(args, uintptr_t); // unsigned ptrdiff_t
- else if (numtype == 'L') x = va_arg(args, unsigned long long);
+ else if (numtype == 'L') x = (uintptr_t)va_arg(args, unsigned long long);
else x = va_arg(args, unsigned long);
}
else if (c == 'p') {
@@ -231,7 +231,7 @@ void _mi_vsnprintf(char* buf, size_t bufsize, const char* fmt, va_list args) {
intptr_t x = 0;
if (numtype == 'z') x = va_arg(args, intptr_t );
else if (numtype == 't') x = va_arg(args, ptrdiff_t);
- else if (numtype == 'L') x = va_arg(args, long long);
+ else if (numtype == 'L') x = (intptr_t)va_arg(args, long long);
else x = va_arg(args, long);
char pre = 0;
if (x < 0) {
diff --git a/src/os.c b/src/os.c
index 2aa4b126..dda6844c 100644
--- a/src/os.c
+++ b/src/os.c
@@ -29,7 +29,7 @@ bool _mi_os_has_overcommit(void) {
return mi_os_mem_config.has_overcommit;
}
-bool _mi_os_has_virtual_reserve(void) {
+bool _mi_os_has_virtual_reserve(void) {
return mi_os_mem_config.has_virtual_reserve;
}
@@ -165,7 +165,7 @@ void _mi_os_free_ex(void* addr, size_t size, bool still_committed, mi_memid_t me
}
}
else {
- // nothing to do
+ // nothing to do
mi_assert(memid.memkind < MI_MEM_OS);
}
}
@@ -188,25 +188,25 @@ static void* mi_os_prim_alloc(size_t size, size_t try_alignment, bool commit, bo
if (!commit) { allow_large = false; }
if (try_alignment == 0) { try_alignment = 1; } // avoid 0 to ensure there will be no divide by zero when aligning
*is_zero = false;
- void* p = NULL;
+ void* p = NULL;
int err = _mi_prim_alloc(size, try_alignment, commit, allow_large, is_large, is_zero, &p);
if (err != 0) {
_mi_warning_message("unable to allocate OS memory (error: %d (0x%x), size: 0x%zx bytes, align: 0x%zx, commit: %d, allow large: %d)\n", err, err, size, try_alignment, commit, allow_large);
}
-
+
MI_UNUSED(tld_stats);
mi_stats_t* stats = &_mi_stats_main;
mi_stat_counter_increase(stats->mmap_calls, 1);
if (p != NULL) {
_mi_stat_increase(&stats->reserved, size);
- if (commit) {
- _mi_stat_increase(&stats->committed, size);
+ if (commit) {
+ _mi_stat_increase(&stats->committed, size);
// seems needed for asan (or `mimalloc-test-api` fails)
#ifdef MI_TRACK_ASAN
if (*is_zero) { mi_track_mem_defined(p,size); }
else { mi_track_mem_undefined(p,size); }
#endif
- }
+ }
}
return p;
}
@@ -243,7 +243,7 @@ static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit
// over-allocate uncommitted (virtual) memory
p = mi_os_prim_alloc(over_size, 1 /*alignment*/, false /* commit? */, false /* allow_large */, is_large, is_zero, stats);
if (p == NULL) return NULL;
-
+
// set p to the aligned part in the full region
// note: this is dangerous on Windows as VirtualFree needs the actual base pointer
// this is handled though by having the `base` field in the memid's
@@ -259,7 +259,7 @@ static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit
// overallocate...
p = mi_os_prim_alloc(over_size, 1, commit, false, is_large, is_zero, stats);
if (p == NULL) return NULL;
-
+
// and selectively unmap parts around the over-allocated area. (noop on sbrk)
void* aligned_p = mi_align_up_ptr(p, alignment);
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
@@ -270,7 +270,7 @@ static void* mi_os_prim_alloc_aligned(size_t size, size_t alignment, bool commit
if (post_size > 0) { mi_os_prim_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats); }
// we can return the aligned pointer on `mmap` (and sbrk) systems
p = aligned_p;
- *base = aligned_p; // since we freed the pre part, `*base == p`.
+ *base = aligned_p; // since we freed the pre part, `*base == p`.
}
}
@@ -292,7 +292,7 @@ void* _mi_os_alloc(size_t size, mi_memid_t* memid, mi_stats_t* stats) {
void* p = mi_os_prim_alloc(size, 0, true, false, &os_is_large, &os_is_zero, stats);
if (p != NULL) {
*memid = _mi_memid_create_os(true, os_is_zero, os_is_large);
- }
+ }
return p;
}
@@ -303,7 +303,7 @@ void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allo
if (size == 0) return NULL;
size = _mi_os_good_alloc_size(size);
alignment = _mi_align_up(alignment, _mi_os_page_size());
-
+
bool os_is_large = false;
bool os_is_zero = false;
void* os_base = NULL;
@@ -318,7 +318,7 @@ void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool allo
/* -----------------------------------------------------------
OS aligned allocation with an offset. This is used
- for large alignments > MI_ALIGNMENT_MAX. We use a large mimalloc
+ for large alignments > MI_BLOCK_ALIGNMENT_MAX. We use a large mimalloc
page where the object can be aligned at an offset from the start of the segment.
As we may need to overallocate, we need to free such pointers using `mi_free_aligned`
to use the actual start of the memory region.
@@ -381,7 +381,7 @@ static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t*
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats) {
MI_UNUSED(tld_stats);
- mi_stats_t* stats = &_mi_stats_main;
+ mi_stats_t* stats = &_mi_stats_main;
if (is_zero != NULL) { *is_zero = false; }
_mi_stat_increase(&stats->committed, size); // use size for precise commit vs. decommit
_mi_stat_counter_increase(&stats->commit_calls, 1);
@@ -391,21 +391,21 @@ bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* tld_stats
void* start = mi_os_page_align_areax(false /* conservative? */, addr, size, &csize);
if (csize == 0) return true;
- // commit
+ // commit
bool os_is_zero = false;
- int err = _mi_prim_commit(start, csize, &os_is_zero);
+ int err = _mi_prim_commit(start, csize, &os_is_zero);
if (err != 0) {
_mi_warning_message("cannot commit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
return false;
}
- if (os_is_zero && is_zero != NULL) {
+ if (os_is_zero && is_zero != NULL) {
*is_zero = true;
mi_assert_expensive(mi_mem_is_zero(start, csize));
}
// note: the following seems required for asan (otherwise `mimalloc-test-stress` fails)
#ifdef MI_TRACK_ASAN
if (os_is_zero) { mi_track_mem_defined(start,csize); }
- else { mi_track_mem_undefined(start,csize); }
+ else { mi_track_mem_undefined(start,csize); }
#endif
return true;
}
@@ -419,11 +419,11 @@ static bool mi_os_decommit_ex(void* addr, size_t size, bool* needs_recommit, mi_
// page align
size_t csize;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
- if (csize == 0) return true;
+ if (csize == 0) return true;
// decommit
*needs_recommit = true;
- int err = _mi_prim_decommit(start,csize,needs_recommit);
+ int err = _mi_prim_decommit(start,csize,needs_recommit);
if (err != 0) {
_mi_warning_message("cannot decommit OS memory (error: %d (0x%x), address: %p, size: 0x%zx bytes)\n", err, err, start, csize);
}
@@ -441,7 +441,7 @@ bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* tld_stats) {
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
-bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
+bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
@@ -461,7 +461,7 @@ bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
}
-// either resets or decommits memory, returns true if the memory needs
+// either resets or decommits memory, returns true if the memory needs
// to be recommitted if it is to be re-used later on.
bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats)
{
@@ -474,7 +474,7 @@ bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats)
{
bool needs_recommit = true;
mi_os_decommit_ex(p, size, &needs_recommit, stats);
- return needs_recommit;
+ return needs_recommit;
}
else {
if (allow_reset) { // this can sometimes be not allowed if the range is not fully committed
@@ -484,7 +484,7 @@ bool _mi_os_purge_ex(void* p, size_t size, bool allow_reset, mi_stats_t* stats)
}
}
-// either resets or decommits memory, returns true if the memory needs
+// either resets or decommits memory, returns true if the memory needs
// to be recommitted if it is to be re-used later on.
bool _mi_os_purge(void* p, size_t size, mi_stats_t * stats) {
return _mi_os_purge_ex(p, size, true, stats);
diff --git a/src/page-queue.c b/src/page-queue.c
index cb54b374..470d1b64 100644
--- a/src/page-queue.c
+++ b/src/page-queue.c
@@ -1,5 +1,5 @@
/*----------------------------------------------------------------------------
-Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
+Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
@@ -11,6 +11,10 @@ terms of the MIT license. A copy of the license can be found in the file
#ifndef MI_IN_PAGE_C
#error "this file should be included from 'page.c'"
+// include to help an IDE
+#include "mimalloc.h"
+#include "mimalloc/internal.h"
+#include "mimalloc/atomic.h"
#endif
/* -----------------------------------------------------------
@@ -137,21 +141,25 @@ static bool mi_heap_contains_queue(const mi_heap_t* heap, const mi_page_queue_t*
}
#endif
-static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) {
- uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size));
- mi_heap_t* heap = mi_page_heap(page);
- mi_assert_internal(heap != NULL && bin <= MI_BIN_FULL);
- mi_page_queue_t* pq = &heap->pages[bin];
- mi_assert_internal(bin >= MI_BIN_HUGE || page->xblock_size == pq->block_size);
- mi_assert_expensive(mi_page_queue_contains(pq, page));
- return pq;
+static inline bool mi_page_is_large_or_huge(const mi_page_t* page) {
+ return (mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_huge(page));
}
static mi_page_queue_t* mi_heap_page_queue_of(mi_heap_t* heap, const mi_page_t* page) {
- uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : mi_bin(page->xblock_size));
+ mi_assert_internal(heap!=NULL);
+ uint8_t bin = (mi_page_is_in_full(page) ? MI_BIN_FULL : (mi_page_is_huge(page) ? MI_BIN_HUGE : mi_bin(mi_page_block_size(page))));
mi_assert_internal(bin <= MI_BIN_FULL);
mi_page_queue_t* pq = &heap->pages[bin];
- mi_assert_internal(mi_page_is_in_full(page) || page->xblock_size == pq->block_size);
+ mi_assert_internal((mi_page_block_size(page) == pq->block_size) ||
+ (mi_page_is_large_or_huge(page) && mi_page_queue_is_huge(pq)) ||
+ (mi_page_is_in_full(page) && mi_page_queue_is_full(pq)));
+ return pq;
+}
+
+static mi_page_queue_t* mi_page_queue_of(const mi_page_t* page) {
+ mi_heap_t* heap = mi_page_heap(page);
+ mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
+ mi_assert_expensive(mi_page_queue_contains(pq, page));
return pq;
}
@@ -206,7 +214,9 @@ static bool mi_page_queue_is_empty(mi_page_queue_t* queue) {
static void mi_page_queue_remove(mi_page_queue_t* queue, mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_expensive(mi_page_queue_contains(queue, page));
- mi_assert_internal(page->xblock_size == queue->block_size || (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX && mi_page_queue_is_huge(queue)) || (mi_page_is_in_full(page) && mi_page_queue_is_full(queue)));
+ mi_assert_internal(mi_page_block_size(page) == queue->block_size ||
+ (mi_page_is_large_or_huge(page) && mi_page_queue_is_huge(queue)) ||
+ (mi_page_is_in_full(page) && mi_page_queue_is_full(queue)));
mi_heap_t* heap = mi_page_heap(page);
if (page->prev != NULL) page->prev->next = page->next;
@@ -232,8 +242,8 @@ static void mi_page_queue_push(mi_heap_t* heap, mi_page_queue_t* queue, mi_page_
#if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
#endif
- mi_assert_internal(page->xblock_size == queue->block_size ||
- (page->xblock_size > MI_MEDIUM_OBJ_SIZE_MAX) ||
+ mi_assert_internal(mi_page_block_size(page) == queue->block_size ||
+ (mi_page_is_large_or_huge(page) && mi_page_queue_is_huge(queue)) ||
(mi_page_is_in_full(page) && mi_page_queue_is_full(queue)));
mi_page_set_in_full(page, mi_page_queue_is_full(queue));
@@ -259,12 +269,13 @@ static void mi_page_queue_enqueue_from(mi_page_queue_t* to, mi_page_queue_t* fro
mi_assert_internal(page != NULL);
mi_assert_expensive(mi_page_queue_contains(from, page));
mi_assert_expensive(!mi_page_queue_contains(to, page));
-
- mi_assert_internal((page->xblock_size == to->block_size && page->xblock_size == from->block_size) ||
- (page->xblock_size == to->block_size && mi_page_queue_is_full(from)) ||
- (page->xblock_size == from->block_size && mi_page_queue_is_full(to)) ||
- (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_huge(to)) ||
- (page->xblock_size > MI_LARGE_OBJ_SIZE_MAX && mi_page_queue_is_full(to)));
+ const size_t bsize = mi_page_block_size(page);
+ MI_UNUSED(bsize);
+ mi_assert_internal((bsize == to->block_size && bsize == from->block_size) ||
+ (bsize == to->block_size && mi_page_queue_is_full(from)) ||
+ (bsize == from->block_size && mi_page_queue_is_full(to)) ||
+ (mi_page_is_large_or_huge(page) && mi_page_queue_is_huge(to)) ||
+ (mi_page_is_large_or_huge(page) && mi_page_queue_is_full(to)));
mi_heap_t* heap = mi_page_heap(page);
if (page->prev != NULL) page->prev->next = page->next;
diff --git a/src/page.c b/src/page.c
index 8ac0a715..c2845c60 100644
--- a/src/page.c
+++ b/src/page.c
@@ -1,5 +1,5 @@
/*----------------------------------------------------------------------------
-Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
+Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
@@ -59,7 +59,7 @@ static inline uint8_t* mi_page_area(const mi_page_t* page) {
static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) {
size_t psize;
- uint8_t* page_area = _mi_page_start(_mi_page_segment(page), page, &psize);
+ uint8_t* page_area = _mi_segment_page_start(_mi_page_segment(page), page, &psize);
mi_block_t* start = (mi_block_t*)page_area;
mi_block_t* end = (mi_block_t*)(page_area + psize);
while(p != NULL) {
@@ -78,14 +78,13 @@ static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) {
}
static bool mi_page_is_valid_init(mi_page_t* page) {
- mi_assert_internal(page->xblock_size > 0);
+ mi_assert_internal(mi_page_block_size(page) > 0);
mi_assert_internal(page->used <= page->capacity);
mi_assert_internal(page->capacity <= page->reserved);
- mi_segment_t* segment = _mi_page_segment(page);
- uint8_t* start = _mi_page_start(segment,page,NULL);
- mi_assert_internal(start == _mi_segment_page_start(segment,page,NULL));
- //const size_t bsize = mi_page_block_size(page);
+ uint8_t* start = mi_page_start(page);
+ mi_assert_internal(start == _mi_segment_page_start(_mi_page_segment(page), page, NULL));
+ mi_assert_internal(page->is_huge == (_mi_page_segment(page)->kind == MI_SEGMENT_HUGE));
//mi_assert_internal(start + page->capacity*page->block_size == page->top);
mi_assert_internal(mi_page_list_is_valid(page,page->free));
@@ -125,9 +124,9 @@ bool _mi_page_is_valid(mi_page_t* page) {
mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id);
#if MI_HUGE_PAGE_ABANDON
- if (segment->kind != MI_SEGMENT_HUGE)
+ if (segment->kind != MI_SEGMENT_HUGE)
#endif
- {
+ {
mi_page_queue_t* pq = mi_page_queue_of(page);
mi_assert_internal(mi_page_queue_contains(pq, page));
mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page));
@@ -193,8 +192,8 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
if (head == NULL) return;
// find the tail -- also to get a proper count (without data races)
- uint32_t max_count = page->capacity; // cannot collect more than capacity
- uint32_t count = 1;
+ size_t max_count = page->capacity; // cannot collect more than capacity
+ size_t count = 1;
mi_block_t* tail = head;
mi_block_t* next;
while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) {
@@ -212,7 +211,7 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
page->local_free = head;
// update counts now
- page->used -= count;
+ page->used -= (uint16_t)count;
}
void _mi_page_free_collect(mi_page_t* page, bool force) {
@@ -263,7 +262,7 @@ void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) {
#if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
#endif
-
+
// TODO: push on full queue immediately if it is full?
mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page));
mi_page_queue_push(heap, pq, page);
@@ -282,11 +281,13 @@ static mi_page_t* mi_page_fresh_alloc(mi_heap_t* heap, mi_page_queue_t* pq, size
// this may be out-of-memory, or an abandoned page was reclaimed (and in our queue)
return NULL;
}
+ #if MI_HUGE_PAGE_ABANDON
+ mi_assert_internal(pq==NULL || _mi_page_segment(page)->page_kind != MI_PAGE_HUGE);
+ #endif
mi_assert_internal(page_alignment >0 || block_size > MI_MEDIUM_OBJ_SIZE_MAX || _mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
- mi_assert_internal(pq!=NULL || page->xblock_size != 0);
mi_assert_internal(pq!=NULL || mi_page_block_size(page) >= block_size);
// a fresh page was found, initialize it
- const size_t full_block_size = ((pq == NULL || mi_page_queue_is_huge(pq)) ? mi_page_block_size(page) : block_size); // see also: mi_segment_huge_page_alloc
+ const size_t full_block_size = (pq == NULL || mi_page_is_huge(page) ? mi_page_block_size(page) : block_size); // see also: mi_segment_huge_page_alloc
mi_assert_internal(full_block_size >= block_size);
mi_page_init(heap, page, full_block_size, heap->tld);
mi_heap_stat_increase(heap, pages, 1);
@@ -427,8 +428,7 @@ void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force) {
_mi_segment_page_free(page, force, segments_tld);
}
-// Retire parameters
-#define MI_MAX_RETIRE_SIZE (MI_MEDIUM_OBJ_SIZE_MAX)
+#define MI_MAX_RETIRE_SIZE MI_MEDIUM_OBJ_SIZE_MAX // should be less than size for MI_BIN_HUGE
#define MI_RETIRE_CYCLES (16)
// Retire a page with no more used blocks
@@ -441,7 +441,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(mi_page_all_free(page));
-
+
mi_page_set_has_aligned(page, false);
// don't retire too often..
@@ -451,10 +451,11 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
// how to check this efficiently though...
// for now, we don't retire if it is the only page left of this size class.
mi_page_queue_t* pq = mi_page_queue_of(page);
- if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_queue_is_special(pq)) { // not too large && not full or huge queue?
+ const size_t bsize = mi_page_block_size(page);
+ if mi_likely( /* bsize < MI_MAX_RETIRE_SIZE && */ !mi_page_queue_is_special(pq)) { // not full or huge queue?
if (pq->last==page && pq->first==page) { // the only page in the queue?
mi_stat_counter_increase(_mi_stats_main.page_no_retire,1);
- page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
+ page->retire_expire = (bsize <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
mi_heap_t* heap = mi_page_heap(page);
mi_assert_internal(pq >= heap->pages);
const size_t index = pq - heap->pages;
@@ -516,7 +517,7 @@ static void mi_page_free_list_extend_secure(mi_heap_t* const heap, mi_page_t* co
#endif
mi_assert_internal(page->capacity + extend <= page->reserved);
mi_assert_internal(bsize == mi_page_block_size(page));
- void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL);
+ void* const page_area = mi_page_start(page);
// initialize a randomized free list
// set up `slice_count` slices to alternate between
@@ -574,7 +575,7 @@ static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, co
#endif
mi_assert_internal(page->capacity + extend <= page->reserved);
mi_assert_internal(bsize == mi_page_block_size(page));
- void* const page_area = _mi_page_start(_mi_page_segment(page), page, NULL );
+ void* const page_area = mi_page_start(page);
mi_block_t* const start = mi_page_block_at(page, page_area, bsize, page->capacity);
@@ -608,7 +609,7 @@ static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, co
// allocations but this did not speed up any benchmark (due to an
// extra test in malloc? or cache effects?)
static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) {
- MI_UNUSED(tld);
+ MI_UNUSED(tld);
mi_assert_expensive(mi_page_is_valid_init(page));
#if (MI_SECURE<=2)
mi_assert(page->free == NULL);
@@ -617,16 +618,14 @@ static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld)
#endif
if (page->capacity >= page->reserved) return;
- size_t page_size;
- _mi_page_start(_mi_page_segment(page), page, &page_size);
mi_stat_counter_increase(tld->stats.pages_extended, 1);
// calculate the extend count
- const size_t bsize = (page->xblock_size < MI_HUGE_BLOCK_SIZE ? page->xblock_size : page_size);
+ const size_t bsize = mi_page_block_size(page);
size_t extend = page->reserved - page->capacity;
mi_assert_internal(extend > 0);
- size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/(uint32_t)bsize);
+ size_t max_extend = (bsize >= MI_MAX_EXTEND_SIZE ? MI_MIN_EXTEND : MI_MAX_EXTEND_SIZE/bsize);
if (max_extend < MI_MIN_EXTEND) { max_extend = MI_MIN_EXTEND; }
mi_assert_internal(max_extend > 0);
@@ -660,11 +659,10 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
mi_assert_internal(block_size > 0);
// set fields
mi_page_set_heap(page, heap);
- page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start
+ page->block_size = block_size;
size_t page_size;
- const void* page_start = _mi_segment_page_start(segment, page, &page_size);
- MI_UNUSED(page_start);
- mi_track_mem_noaccess(page_start,page_size);
+ page->page_start = _mi_segment_page_start(segment, page, &page_size);
+ mi_track_mem_noaccess(page->page_start,page_size);
mi_assert_internal(mi_page_block_size(page) <= page_size);
mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE);
mi_assert_internal(page_size / block_size < (1L<<16));
@@ -677,12 +675,18 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
page->free_is_zero = page->is_zero_init;
#if MI_DEBUG>2
if (page->is_zero_init) {
- mi_track_mem_defined(page_start, page_size);
- mi_assert_expensive(mi_mem_is_zero(page_start, page_size));
+ mi_track_mem_defined(page->page_start, page_size);
+ mi_assert_expensive(mi_mem_is_zero(page->page_start, page_size));
}
#endif
-
mi_assert_internal(page->is_committed);
+ if (block_size > 0 && _mi_is_power_of_two(block_size)) {
+ page->block_size_shift = (uint8_t)(mi_ctz((uintptr_t)block_size));
+ }
+ else {
+ page->block_size_shift = 0;
+ }
+
mi_assert_internal(page->capacity == 0);
mi_assert_internal(page->free == NULL);
mi_assert_internal(page->used == 0);
@@ -695,6 +699,7 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
mi_assert_internal(page->keys[0] != 0);
mi_assert_internal(page->keys[1] != 0);
#endif
+ mi_assert_internal(page->block_size_shift == 0 || (block_size == ((size_t)1 << page->block_size_shift)));
mi_assert_expensive(mi_page_is_valid_init(page));
// initialize an initial free list
@@ -718,7 +723,7 @@ static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* p
while (page != NULL)
{
mi_page_t* next = page->next; // remember next
- #if MI_STAT
+ #if MI_STAT
count++;
#endif
@@ -820,11 +825,9 @@ void mi_register_deferred_free(mi_deferred_free_fun* fn, void* arg) mi_attr_noex
----------------------------------------------------------- */
// Large and huge page allocation.
-// Huge pages are allocated directly without being in a queue.
-// Because huge pages contain just one block, and the segment contains
-// just that page, we always treat them as abandoned and any thread
-// that frees the block can free the whole page and segment directly.
-// Huge pages are also use if the requested alignment is very large (> MI_ALIGNMENT_MAX).
+// Huge pages contain just one block, and the segment contains just that page (as `MI_SEGMENT_HUGE`).
+// Huge pages are also use if the requested alignment is very large (> MI_BLOCK_ALIGNMENT_MAX)
+// so their size is not always `> MI_LARGE_OBJ_SIZE_MAX`.
static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t page_alignment) {
size_t block_size = _mi_os_good_alloc_size(size);
mi_assert_internal(mi_bin(block_size) == MI_BIN_HUGE || page_alignment > 0);
@@ -832,25 +835,26 @@ static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t
#if MI_HUGE_PAGE_ABANDON
mi_page_queue_t* pq = (is_huge ? NULL : mi_page_queue(heap, block_size));
#else
- mi_page_queue_t* pq = mi_page_queue(heap, is_huge ? MI_HUGE_BLOCK_SIZE : block_size); // not block_size as that can be low if the page_alignment > 0
+ mi_page_queue_t* pq = mi_page_queue(heap, is_huge ? MI_LARGE_OBJ_SIZE_MAX+1 : block_size);
mi_assert_internal(!is_huge || mi_page_queue_is_huge(pq));
#endif
mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment);
if (page != NULL) {
mi_assert_internal(mi_page_immediate_available(page));
-
+
if (is_huge) {
+ mi_assert_internal(mi_page_is_huge(page));
mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
mi_assert_internal(_mi_page_segment(page)->used==1);
#if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue
mi_page_set_heap(page, NULL);
- #endif
+ #endif
}
else {
- mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
+ mi_assert_internal(!mi_page_is_huge(page));
}
-
+
const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_increase(heap, large, bsize);
@@ -869,7 +873,7 @@ static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t
// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept {
// huge allocation?
- const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
+ const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
if mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) {
if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see )
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size);
@@ -882,7 +886,7 @@ static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignme
else {
// otherwise find a page with free blocks in our size segregated queues
#if MI_PADDING
- mi_assert_internal(size >= MI_PADDING_SIZE);
+ mi_assert_internal(size >= MI_PADDING_SIZE);
#endif
return mi_find_free_page(heap, size);
}
@@ -898,7 +902,7 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_al
// initialize if necessary
if mi_unlikely(!mi_heap_is_initialized(heap)) {
- heap = mi_heap_get_default(); // calls mi_thread_init
+ heap = mi_heap_get_default(); // calls mi_thread_init
if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; }
}
mi_assert_internal(mi_heap_is_initialized(heap));
@@ -926,7 +930,7 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_al
mi_assert_internal(mi_page_block_size(page) >= size);
// and try again, this time succeeding! (i.e. this should never recurse through _mi_page_malloc)
- if mi_unlikely(zero && page->xblock_size == 0) {
+ if mi_unlikely(zero && page->block_size == 0) {
// note: we cannot call _mi_page_malloc with zeroing for huge blocks; we zero it afterwards in that case.
void* p = _mi_page_malloc(heap, page, size, false);
mi_assert_internal(p != NULL);
diff --git a/src/segment.c b/src/segment.c
index 4af24066..e9032896 100644
--- a/src/segment.c
+++ b/src/segment.c
@@ -1,5 +1,5 @@
/* ----------------------------------------------------------------------------
-Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
+Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
@@ -11,7 +11,11 @@ terms of the MIT license. A copy of the license can be found in the file
#include // memset
#include
-#define MI_PAGE_HUGE_ALIGN (256*1024)
+// -------------------------------------------------------------------
+// Segments
+// mimalloc pages reside in segments. See `mi_segment_valid` for invariants.
+// -------------------------------------------------------------------
+
static void mi_segment_try_purge(mi_segment_t* segment, bool force, mi_stats_t* stats);
@@ -146,10 +150,6 @@ size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx) {
/* --------------------------------------------------------------------------------
Segment allocation
-
- If a thread ends, it "abandons" pages with used blocks
- and there is an abandoned segment list whose segments can
- be reclaimed by still running threads, much like work-stealing.
-------------------------------------------------------------------------------- */
@@ -212,7 +212,7 @@ static void mi_span_queue_push(mi_span_queue_t* sq, mi_slice_t* slice) {
sq->first = slice;
if (slice->next != NULL) slice->next->prev = slice;
else sq->last = slice;
- slice->xblock_size = 0; // free
+ slice->block_size = 0; // free
}
static mi_span_queue_t* mi_span_queue_for(size_t slice_count, mi_segments_tld_t* tld) {
@@ -223,7 +223,7 @@ static mi_span_queue_t* mi_span_queue_for(size_t slice_count, mi_segments_tld_t*
}
static void mi_span_queue_delete(mi_span_queue_t* sq, mi_slice_t* slice) {
- mi_assert_internal(slice->xblock_size==0 && slice->slice_count>0 && slice->slice_offset==0);
+ mi_assert_internal(slice->block_size==0 && slice->slice_count>0 && slice->slice_offset==0);
// should work too if the queue does not contain slice (which can happen during reclaim)
if (slice->prev != NULL) slice->prev->next = slice->next;
if (slice == sq->first) sq->first = slice->next;
@@ -231,7 +231,7 @@ static void mi_span_queue_delete(mi_span_queue_t* sq, mi_slice_t* slice) {
if (slice == sq->last) sq->last = slice->prev;
slice->prev = NULL;
slice->next = NULL;
- slice->xblock_size = 1; // no more free
+ slice->block_size = 1; // no more free
}
@@ -240,7 +240,7 @@ static void mi_span_queue_delete(mi_span_queue_t* sq, mi_slice_t* slice) {
----------------------------------------------------------- */
static bool mi_slice_is_used(const mi_slice_t* slice) {
- return (slice->xblock_size > 0);
+ return (slice->block_size > 0);
}
@@ -268,19 +268,20 @@ static bool mi_segment_is_valid(mi_segment_t* segment, mi_segments_tld_t* tld) {
mi_assert_internal(slice->slice_offset == 0);
size_t index = mi_slice_index(slice);
size_t maxindex = (index + slice->slice_count >= segment->slice_entries ? segment->slice_entries : index + slice->slice_count) - 1;
- if (mi_slice_is_used(slice)) { // a page in use, we need at least MAX_SLICE_OFFSET valid back offsets
+ if (mi_slice_is_used(slice)) { // a page in use, we need at least MAX_SLICE_OFFSET_COUNT valid back offsets
used_count++;
- for (size_t i = 0; i <= MI_MAX_SLICE_OFFSET && index + i <= maxindex; i++) {
+ mi_assert_internal(slice->is_huge == (segment->kind == MI_SEGMENT_HUGE));
+ for (size_t i = 0; i <= MI_MAX_SLICE_OFFSET_COUNT && index + i <= maxindex; i++) {
mi_assert_internal(segment->slices[index + i].slice_offset == i*sizeof(mi_slice_t));
mi_assert_internal(i==0 || segment->slices[index + i].slice_count == 0);
- mi_assert_internal(i==0 || segment->slices[index + i].xblock_size == 1);
+ mi_assert_internal(i==0 || segment->slices[index + i].block_size == 1);
}
// and the last entry as well (for coalescing)
const mi_slice_t* last = slice + slice->slice_count - 1;
if (last > slice && last < mi_segment_slices_end(segment)) {
mi_assert_internal(last->slice_offset == (slice->slice_count-1)*sizeof(mi_slice_t));
mi_assert_internal(last->slice_count == 0);
- mi_assert_internal(last->xblock_size == 1);
+ mi_assert_internal(last->block_size == 1);
}
}
else { // free range of slices; only last slice needs a valid back offset
@@ -289,7 +290,7 @@ static bool mi_segment_is_valid(mi_segment_t* segment, mi_segments_tld_t* tld) {
mi_assert_internal((uint8_t*)slice == (uint8_t*)last - last->slice_offset);
}
mi_assert_internal(slice == last || last->slice_count == 0 );
- mi_assert_internal(last->xblock_size == 0 || (segment->kind==MI_SEGMENT_HUGE && last->xblock_size==1));
+ mi_assert_internal(last->block_size == 0 || (segment->kind==MI_SEGMENT_HUGE && last->block_size==1));
if (segment->kind != MI_SEGMENT_HUGE && segment->thread_id != 0) { // segment is not huge or abandoned
sq = mi_span_queue_for(slice->slice_count,tld);
mi_assert_internal(mi_span_queue_contains(sq,slice));
@@ -331,8 +332,8 @@ static uint8_t* _mi_segment_page_start_from_slice(const mi_segment_t* segment, c
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size)
{
const mi_slice_t* slice = mi_page_to_slice((mi_page_t*)page);
- uint8_t* p = _mi_segment_page_start_from_slice(segment, slice, page->xblock_size, page_size);
- mi_assert_internal(page->xblock_size > 0 || _mi_ptr_page(p) == page);
+ uint8_t* p = _mi_segment_page_start_from_slice(segment, slice, mi_page_block_size(page), page_size);
+ mi_assert_internal(mi_page_block_size(page) > 0 || _mi_ptr_page(p) == page);
mi_assert_internal(_mi_ptr_segment(p) == segment);
return p;
}
@@ -600,7 +601,7 @@ static void mi_segment_try_purge(mi_segment_t* segment, bool force, mi_stats_t*
----------------------------------------------------------- */
static bool mi_segment_is_abandoned(mi_segment_t* segment) {
- return (segment->thread_id == 0);
+ return (mi_atomic_load_relaxed(&segment->thread_id) == 0);
}
// note: can be called on abandoned segments
@@ -620,7 +621,7 @@ static void mi_segment_span_free(mi_segment_t* segment, size_t slice_index, size
mi_slice_t* last = &segment->slices[slice_index + slice_count - 1];
last->slice_count = 0;
last->slice_offset = (uint32_t)(sizeof(mi_page_t)*(slice_count - 1));
- last->xblock_size = 0;
+ last->block_size = 0;
}
// perhaps decommit
@@ -630,7 +631,7 @@ static void mi_segment_span_free(mi_segment_t* segment, size_t slice_index, size
// and push it on the free page queue (if it was not a huge page)
if (sq != NULL) mi_span_queue_push( sq, slice );
- else slice->xblock_size = 0; // mark huge page as free anyways
+ else slice->block_size = 0; // mark huge page as free anyways
}
/*
@@ -644,7 +645,7 @@ static void mi_segment_span_add_free(mi_slice_t* slice, mi_segments_tld_t* tld)
*/
static void mi_segment_span_remove_from_queue(mi_slice_t* slice, mi_segments_tld_t* tld) {
- mi_assert_internal(slice->slice_count > 0 && slice->slice_offset==0 && slice->xblock_size==0);
+ mi_assert_internal(slice->slice_count > 0 && slice->slice_offset==0 && slice->block_size==0);
mi_assert_internal(_mi_ptr_segment(slice)->kind != MI_SEGMENT_HUGE);
mi_span_queue_t* sq = mi_span_queue_for(slice->slice_count, tld);
mi_span_queue_delete(sq, slice);
@@ -653,14 +654,14 @@ static void mi_segment_span_remove_from_queue(mi_slice_t* slice, mi_segments_tld
// note: can be called on abandoned segments
static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_tld_t* tld) {
mi_assert_internal(slice != NULL && slice->slice_count > 0 && slice->slice_offset == 0);
- mi_segment_t* segment = _mi_ptr_segment(slice);
- bool is_abandoned = mi_segment_is_abandoned(segment);
+ mi_segment_t* const segment = _mi_ptr_segment(slice);
+ const bool is_abandoned = (segment->thread_id == 0); // mi_segment_is_abandoned(segment);
// for huge pages, just mark as free but don't add to the queues
if (segment->kind == MI_SEGMENT_HUGE) {
// issue #691: segment->used can be 0 if the huge page block was freed while abandoned (reclaim will get here in that case)
- mi_assert_internal((segment->used==0 && slice->xblock_size==0) || segment->used == 1); // decreased right after this call in `mi_segment_page_clear`
- slice->xblock_size = 0; // mark as free anyways
+ mi_assert_internal((segment->used==0 && slice->block_size==0) || segment->used == 1); // decreased right after this call in `mi_segment_page_clear`
+ slice->block_size = 0; // mark as free anyways
// we should mark the last slice `xblock_size=0` now to maintain invariants but we skip it to
// avoid a possible cache miss (and the segment is about to be freed)
return slice;
@@ -670,7 +671,7 @@ static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_
size_t slice_count = slice->slice_count;
mi_slice_t* next = slice + slice->slice_count;
mi_assert_internal(next <= mi_segment_slices_end(segment));
- if (next < mi_segment_slices_end(segment) && next->xblock_size==0) {
+ if (next < mi_segment_slices_end(segment) && next->block_size==0) {
// free next block -- remove it from free and merge
mi_assert_internal(next->slice_count > 0 && next->slice_offset==0);
slice_count += next->slice_count; // extend
@@ -679,7 +680,7 @@ static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_
if (slice > segment->slices) {
mi_slice_t* prev = mi_slice_first(slice - 1);
mi_assert_internal(prev >= segment->slices);
- if (prev->xblock_size==0) {
+ if (prev->block_size==0) {
// free previous slice -- remove it from free and merge
mi_assert_internal(prev->slice_count > 0 && prev->slice_offset==0);
slice_count += prev->slice_count;
@@ -703,7 +704,7 @@ static mi_slice_t* mi_segment_span_free_coalesce(mi_slice_t* slice, mi_segments_
static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_index, size_t slice_count, mi_segments_tld_t* tld) {
mi_assert_internal(slice_index < segment->slice_entries);
mi_slice_t* const slice = &segment->slices[slice_index];
- mi_assert_internal(slice->xblock_size==0 || slice->xblock_size==1);
+ mi_assert_internal(slice->block_size==0 || slice->block_size==1);
// commit before changing the slice data
if (!mi_segment_ensure_committed(segment, _mi_segment_page_start_from_slice(segment, slice, 0, NULL), slice_count * MI_SEGMENT_SLICE_SIZE, tld->stats)) {
@@ -715,20 +716,20 @@ static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_i
slice->slice_count = (uint32_t)slice_count;
mi_assert_internal(slice->slice_count == slice_count);
const size_t bsize = slice_count * MI_SEGMENT_SLICE_SIZE;
- slice->xblock_size = (uint32_t)(bsize >= MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : bsize);
+ slice->block_size = bsize;
mi_page_t* page = mi_slice_to_page(slice);
mi_assert_internal(mi_page_block_size(page) == bsize);
- // set slice back pointers for the first MI_MAX_SLICE_OFFSET entries
+ // set slice back pointers for the first MI_MAX_SLICE_OFFSET_COUNT entries
size_t extra = slice_count-1;
- if (extra > MI_MAX_SLICE_OFFSET) extra = MI_MAX_SLICE_OFFSET;
+ if (extra > MI_MAX_SLICE_OFFSET_COUNT) extra = MI_MAX_SLICE_OFFSET_COUNT;
if (slice_index + extra >= segment->slice_entries) extra = segment->slice_entries - slice_index - 1; // huge objects may have more slices than avaiable entries in the segment->slices
mi_slice_t* slice_next = slice + 1;
for (size_t i = 1; i <= extra; i++, slice_next++) {
slice_next->slice_offset = (uint32_t)(sizeof(mi_slice_t)*i);
slice_next->slice_count = 0;
- slice_next->xblock_size = 1;
+ slice_next->block_size = 1;
}
// and also for the last one (if not set already) (the last one is needed for coalescing and for large alignments)
@@ -739,11 +740,12 @@ static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_i
if (last > slice) {
last->slice_offset = (uint32_t)(sizeof(mi_slice_t) * (last - slice));
last->slice_count = 0;
- last->xblock_size = 1;
+ last->block_size = 1;
}
// and initialize the page
page->is_committed = true;
+ page->is_huge = (segment->kind == MI_SEGMENT_HUGE);
segment->used++;
return page;
}
@@ -751,7 +753,7 @@ static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_i
static void mi_segment_slice_split(mi_segment_t* segment, mi_slice_t* slice, size_t slice_count, mi_segments_tld_t* tld) {
mi_assert_internal(_mi_ptr_segment(slice) == segment);
mi_assert_internal(slice->slice_count >= slice_count);
- mi_assert_internal(slice->xblock_size > 0); // no more in free queue
+ mi_assert_internal(slice->block_size > 0); // no more in free queue
if (slice->slice_count <= slice_count) return;
mi_assert_internal(segment->kind != MI_SEGMENT_HUGE);
size_t next_index = mi_slice_index(slice) + slice_count;
@@ -777,7 +779,7 @@ static mi_page_t* mi_segments_page_find_and_allocate(size_t slice_count, mi_aren
if (slice->slice_count > slice_count) {
mi_segment_slice_split(segment, slice, slice_count, tld);
}
- mi_assert_internal(slice != NULL && slice->slice_count == slice_count && slice->xblock_size > 0);
+ mi_assert_internal(slice != NULL && slice->slice_count == slice_count && slice->block_size > 0);
mi_page_t* page = mi_segment_span_allocate(segment, mi_slice_index(slice), slice->slice_count, tld);
if (page == NULL) {
// commit failed; return NULL but first restore the slice
@@ -954,8 +956,8 @@ static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t
while (slice < end) {
mi_assert_internal(slice->slice_count > 0);
mi_assert_internal(slice->slice_offset == 0);
- mi_assert_internal(mi_slice_index(slice)==0 || slice->xblock_size == 0); // no more used pages ..
- if (slice->xblock_size == 0 && segment->kind != MI_SEGMENT_HUGE) {
+ mi_assert_internal(mi_slice_index(slice)==0 || slice->block_size == 0); // no more used pages ..
+ if (slice->block_size == 0 && segment->kind != MI_SEGMENT_HUGE) {
mi_segment_span_remove_from_queue(slice, tld);
}
#if MI_DEBUG>1
@@ -981,7 +983,7 @@ static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld);
// note: can be called on abandoned pages
static mi_slice_t* mi_segment_page_clear(mi_page_t* page, mi_segments_tld_t* tld) {
- mi_assert_internal(page->xblock_size > 0);
+ mi_assert_internal(page->block_size > 0);
mi_assert_internal(mi_page_all_free(page));
mi_segment_t* segment = _mi_ptr_segment(page);
mi_assert_internal(segment->used > 0);
@@ -993,7 +995,7 @@ static mi_slice_t* mi_segment_page_clear(mi_page_t* page, mi_segments_tld_t* tld
// reset the page memory to reduce memory pressure?
if (segment->allow_decommit && mi_option_is_enabled(mi_option_deprecated_page_reset)) {
size_t psize;
- uint8_t* start = _mi_page_start(segment, page, &psize);
+ uint8_t* start = _mi_segment_page_start(segment, page, &psize);
_mi_os_reset(start, psize, tld->stats);
}
@@ -1001,7 +1003,7 @@ static mi_slice_t* mi_segment_page_clear(mi_page_t* page, mi_segments_tld_t* tld
page->is_zero_init = false;
ptrdiff_t ofs = offsetof(mi_page_t, capacity);
_mi_memzero((uint8_t*)page + ofs, sizeof(*page) - ofs);
- page->xblock_size = 1;
+ page->block_size = 1;
// and free it
mi_slice_t* slice = mi_segment_span_free_coalesce(mi_page_to_slice(page), tld);
@@ -1048,6 +1050,11 @@ reuse their pages and/or free them eventually. The
When a block is freed in an abandoned segment, the segment
is reclaimed into that thread.
+
+Moreover, if threads are looking for a fresh segment, they
+will first consider abondoned segments -- these can be found
+by scanning the arena memory
+(segments outside arena memoryare only reclaimed by a free).
----------------------------------------------------------- */
// legacy: Wait until there are no more pending reads on segments that used to be in the abandoned list
@@ -1071,9 +1078,9 @@ static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
while (slice < end) {
mi_assert_internal(slice->slice_count > 0);
mi_assert_internal(slice->slice_offset == 0);
- if (slice->xblock_size == 0) { // a free page
+ if (slice->block_size == 0) { // a free page
mi_segment_span_remove_from_queue(slice,tld);
- slice->xblock_size = 0; // but keep it free
+ slice->block_size = 0; // but keep it free
}
slice = slice + slice->slice_count;
}
@@ -1120,7 +1127,7 @@ void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) {
static mi_slice_t* mi_slices_start_iterate(mi_segment_t* segment, const mi_slice_t** end) {
mi_slice_t* slice = &segment->slices[0];
*end = mi_segment_slices_end(segment);
- mi_assert_internal(slice->slice_count>0 && slice->xblock_size>0); // segment allocated page
+ mi_assert_internal(slice->slice_count>0 && slice->block_size>0); // segment allocated page
slice = slice + slice->slice_count; // skip the first segment allocated page
return slice;
}
@@ -1128,7 +1135,6 @@ static mi_slice_t* mi_slices_start_iterate(mi_segment_t* segment, const mi_slice
// Possibly free pages and check if free space is available
static bool mi_segment_check_free(mi_segment_t* segment, size_t slices_needed, size_t block_size, mi_segments_tld_t* tld)
{
- mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
mi_assert_internal(mi_segment_is_abandoned(segment));
bool has_page = false;
@@ -1153,11 +1159,9 @@ static bool mi_segment_check_free(mi_segment_t* segment, size_t slices_needed, s
has_page = true;
}
}
- else {
- if (page->xblock_size == block_size && mi_page_has_any_available(page)) {
- // a page has available free blocks of the right size
- has_page = true;
- }
+ else if (mi_page_block_size(page) == block_size && mi_page_has_any_available(page)) {
+ // a page has available free blocks of the right size
+ has_page = true;
}
}
else {
@@ -1211,7 +1215,7 @@ static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap,
else {
// otherwise reclaim it into the heap
_mi_page_reclaim(heap, page);
- if (requested_block_size == page->xblock_size && mi_page_has_any_available(page)) {
+ if (requested_block_size == mi_page_block_size(page) && mi_page_has_any_available(page)) {
if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; }
}
}
@@ -1259,26 +1263,31 @@ void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) {
}
static long mi_segment_get_reclaim_tries(void) {
- // limit the tries to 10% (default) of the abandoned segments with at least 8 tries, and at most 1024.
+ // limit the tries to 10% (default) of the abandoned segments with at least 8 and at most 1024 tries.
const size_t perc = (size_t)mi_option_get_clamp(mi_option_max_segment_reclaim, 0, 100);
if (perc <= 0) return 0;
const size_t total_count = _mi_arena_segment_abandoned_count();
+ if (total_count == 0) return 0;
const size_t relative_count = (total_count > 10000 ? (total_count / 100) * perc : (total_count * perc) / 100); // avoid overflow
- long max_tries = (long)(relative_count < 8 ? 8 : (relative_count > 1024 ? 1024 : relative_count));
+ long max_tries = (long)(relative_count <= 1 ? 1 : (relative_count > 1024 ? 1024 : relative_count));
+ if (max_tries < 8 && total_count > 8) { max_tries = 8; }
return max_tries;
}
static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t needed_slices, size_t block_size, bool* reclaimed, mi_segments_tld_t* tld)
{
*reclaimed = false;
- mi_segment_t* segment;
- mi_arena_field_cursor_t current; _mi_arena_field_cursor_init(heap,¤t);
long max_tries = mi_segment_get_reclaim_tries();
+ if (max_tries <= 0) return NULL;
+
+ mi_segment_t* segment;
+ mi_arena_field_cursor_t current; _mi_arena_field_cursor_init(heap, ¤t);
while ((max_tries-- > 0) && ((segment = _mi_arena_segment_clear_abandoned_next(¤t)) != NULL))
{
segment->abandoned_visits++;
- // todo: an arena exclusive heap will potentially visit many abandoned unsuitable segments
- // and push them into the visited list and use many tries. Perhaps we can skip non-suitable ones in a better way?
+ // todo: should we respect numa affinity for abondoned reclaim? perhaps only for the first visit?
+ // todo: an arena exclusive heap will potentially visit many abandoned unsuitable segments and use many tries
+ // Perhaps we can skip non-suitable ones in a better way?
bool is_suitable = _mi_heap_memid_is_suitable(heap, segment->memid);
bool has_page = mi_segment_check_free(segment,needed_slices,block_size,tld); // try to free up pages (due to concurrent frees)
if (segment->used == 0) {
@@ -1337,7 +1346,6 @@ void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld)
static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t needed_slices, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
{
- mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
mi_assert_internal(block_size <= MI_LARGE_OBJ_SIZE_MAX);
// 1. try to reclaim an abandoned segment
@@ -1404,11 +1412,12 @@ static mi_page_t* mi_segment_huge_page_alloc(size_t size, size_t page_alignment,
segment->thread_id = 0; // huge segments are immediately abandoned
#endif
- // for huge pages we initialize the xblock_size as we may
+ // for huge pages we initialize the block_size as we may
// overallocate to accommodate large alignments.
size_t psize;
uint8_t* start = _mi_segment_page_start(segment, page, &psize);
- page->xblock_size = (psize > MI_HUGE_BLOCK_SIZE ? MI_HUGE_BLOCK_SIZE : (uint32_t)psize);
+ page->block_size = psize;
+ mi_assert_internal(page->is_huge);
// decommit the part of the prefix of a page that will not be used; this can be quite large (close to MI_SEGMENT_SIZE)
if (page_alignment > 0 && segment->allow_decommit) {
@@ -1439,7 +1448,7 @@ void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block
mi_block_set_next(page, block, page->free);
page->free = block;
page->used--;
- page->is_zero = false;
+ page->is_zero_init = false;
mi_assert(page->used == 0);
mi_tld_t* tld = heap->tld;
_mi_segment_page_free(page, true, &tld->segments);
@@ -1475,7 +1484,7 @@ void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_bloc
----------------------------------------------------------- */
mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
mi_page_t* page;
- if mi_unlikely(page_alignment > MI_ALIGNMENT_MAX) {
+ if mi_unlikely(page_alignment > MI_BLOCK_ALIGNMENT_MAX) {
mi_assert_internal(_mi_is_power_of_two(page_alignment));
mi_assert_internal(page_alignment >= MI_SEGMENT_SIZE);
if (page_alignment < MI_SEGMENT_SIZE) { page_alignment = MI_SEGMENT_SIZE; }
diff --git a/src/stats.c b/src/stats.c
index 9b88674b..a9364027 100644
--- a/src/stats.c
+++ b/src/stats.c
@@ -175,13 +175,28 @@ static void mi_print_count(int64_t n, int64_t unit, mi_output_fun* out, void* ar
static void mi_stat_print_ex(const mi_stat_count_t* stat, const char* msg, int64_t unit, mi_output_fun* out, void* arg, const char* notok ) {
_mi_fprintf(out, arg,"%10s:", msg);
- if (unit > 0) {
- mi_print_amount(stat->peak, unit, out, arg);
- mi_print_amount(stat->allocated, unit, out, arg);
- mi_print_amount(stat->freed, unit, out, arg);
- mi_print_amount(stat->current, unit, out, arg);
- mi_print_amount(unit, 1, out, arg);
- mi_print_count(stat->allocated, unit, out, arg);
+ if (unit != 0) {
+ if (unit > 0) {
+ mi_print_amount(stat->peak, unit, out, arg);
+ mi_print_amount(stat->allocated, unit, out, arg);
+ mi_print_amount(stat->freed, unit, out, arg);
+ mi_print_amount(stat->current, unit, out, arg);
+ mi_print_amount(unit, 1, out, arg);
+ mi_print_count(stat->allocated, unit, out, arg);
+ }
+ else {
+ mi_print_amount(stat->peak, -1, out, arg);
+ mi_print_amount(stat->allocated, -1, out, arg);
+ mi_print_amount(stat->freed, -1, out, arg);
+ mi_print_amount(stat->current, -1, out, arg);
+ if (unit == -1) {
+ _mi_fprintf(out, arg, "%24s", "");
+ }
+ else {
+ mi_print_amount(-unit, 1, out, arg);
+ mi_print_count((stat->allocated / -unit), 0, out, arg);
+ }
+ }
if (stat->allocated > stat->freed) {
_mi_fprintf(out, arg, " ");
_mi_fprintf(out, arg, (notok == NULL ? "not all freed" : notok));
@@ -191,23 +206,6 @@ static void mi_stat_print_ex(const mi_stat_count_t* stat, const char* msg, int64
_mi_fprintf(out, arg, " ok\n");
}
}
- else if (unit<0) {
- mi_print_amount(stat->peak, -1, out, arg);
- mi_print_amount(stat->allocated, -1, out, arg);
- mi_print_amount(stat->freed, -1, out, arg);
- mi_print_amount(stat->current, -1, out, arg);
- if (unit==-1) {
- _mi_fprintf(out, arg, "%24s", "");
- }
- else {
- mi_print_amount(-unit, 1, out, arg);
- mi_print_count((stat->allocated / -unit), 0, out, arg);
- }
- if (stat->allocated > stat->freed)
- _mi_fprintf(out, arg, " not all freed!\n");
- else
- _mi_fprintf(out, arg, " ok\n");
- }
else {
mi_print_amount(stat->peak, 1, out, arg);
mi_print_amount(stat->allocated, 1, out, arg);
@@ -457,7 +455,7 @@ mi_decl_export void mi_process_info(size_t* elapsed_msecs, size_t* user_msecs, s
pinfo.page_faults = 0;
_mi_prim_process_info(&pinfo);
-
+
if (elapsed_msecs!=NULL) *elapsed_msecs = (pinfo.elapsed < 0 ? 0 : (pinfo.elapsed < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.elapsed : PTRDIFF_MAX));
if (user_msecs!=NULL) *user_msecs = (pinfo.utime < 0 ? 0 : (pinfo.utime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.utime : PTRDIFF_MAX));
if (system_msecs!=NULL) *system_msecs = (pinfo.stime < 0 ? 0 : (pinfo.stime < (mi_msecs_t)PTRDIFF_MAX ? (size_t)pinfo.stime : PTRDIFF_MAX));
diff --git a/test/main-override.cpp b/test/main-override.cpp
index 77117625..582f24ee 100644
--- a/test/main-override.cpp
+++ b/test/main-override.cpp
@@ -379,7 +379,7 @@ static void bench_alloc_large(void) {
static constexpr size_t kMaxBufferSize = 25 * 1024 * 1024;
std::unique_ptr buffers[kNumBuffers];
- std::random_device rd;
+ std::random_device rd; (void)rd;
std::mt19937 gen(42); //rd());
std::uniform_int_distribution<> size_distribution(kMinBufferSize, kMaxBufferSize);
std::uniform_int_distribution<> buf_number_distribution(0, kNumBuffers - 1);
diff --git a/test/test-api.c b/test/test-api.c
index edc506b3..76726f28 100644
--- a/test/test-api.c
+++ b/test/test-api.c
@@ -34,7 +34,7 @@ we therefore test the API over various inputs. Please add more tests :-)
#include "mimalloc.h"
// #include "mimalloc/internal.h"
-#include "mimalloc/types.h" // for MI_DEBUG and MI_ALIGNMENT_MAX
+#include "mimalloc/types.h" // for MI_DEBUG and MI_BLOCK_ALIGNMENT_MAX
#include "testhelper.h"
@@ -64,7 +64,7 @@ bool mem_is_zero(uint8_t* p, size_t size) {
// ---------------------------------------------------------------------------
int main(void) {
mi_option_disable(mi_option_verbose);
-
+
// ---------------------------------------------------
// Malloc
// ---------------------------------------------------
@@ -159,7 +159,7 @@ int main(void) {
};
CHECK_BODY("malloc-aligned6") {
bool ok = true;
- for (size_t align = 1; align <= MI_ALIGNMENT_MAX && ok; align *= 2) {
+ for (size_t align = 1; align <= MI_BLOCK_ALIGNMENT_MAX && ok; align *= 2) {
void* ps[8];
for (int i = 0; i < 8 && ok; i++) {
ps[i] = mi_malloc_aligned(align*13 // size
@@ -175,16 +175,16 @@ int main(void) {
result = ok;
};
CHECK_BODY("malloc-aligned7") {
- void* p = mi_malloc_aligned(1024,MI_ALIGNMENT_MAX);
+ void* p = mi_malloc_aligned(1024,MI_BLOCK_ALIGNMENT_MAX);
mi_free(p);
- result = ((uintptr_t)p % MI_ALIGNMENT_MAX) == 0;
+ result = ((uintptr_t)p % MI_BLOCK_ALIGNMENT_MAX) == 0;
};
CHECK_BODY("malloc-aligned8") {
bool ok = true;
for (int i = 0; i < 5 && ok; i++) {
int n = (1 << i);
- void* p = mi_malloc_aligned(1024, n * MI_ALIGNMENT_MAX);
- ok = ((uintptr_t)p % (n*MI_ALIGNMENT_MAX)) == 0;
+ void* p = mi_malloc_aligned(1024, n * MI_BLOCK_ALIGNMENT_MAX);
+ ok = ((uintptr_t)p % (n*MI_BLOCK_ALIGNMENT_MAX)) == 0;
mi_free(p);
}
result = ok;
@@ -192,7 +192,7 @@ int main(void) {
CHECK_BODY("malloc-aligned9") {
bool ok = true;
void* p[8];
- size_t sizes[8] = { 8, 512, 1024 * 1024, MI_ALIGNMENT_MAX, MI_ALIGNMENT_MAX + 1, 2 * MI_ALIGNMENT_MAX, 8 * MI_ALIGNMENT_MAX, 0 };
+ size_t sizes[8] = { 8, 512, 1024 * 1024, MI_BLOCK_ALIGNMENT_MAX, MI_BLOCK_ALIGNMENT_MAX + 1, 2 * MI_BLOCK_ALIGNMENT_MAX, 8 * MI_BLOCK_ALIGNMENT_MAX, 0 };
for (int i = 0; i < 28 && ok; i++) {
int align = (1 << i);
for (int j = 0; j < 8 && ok; j++) {