merge from dev

This commit is contained in:
daan 2019-09-17 17:49:56 -07:00
commit 8857f0a5ef
67 changed files with 1912 additions and 934 deletions

366
src/os.c
View file

@ -35,10 +35,9 @@ terms of the MIT license. A copy of the license can be found in the file
On windows initializes support for aligned allocation and
large OS pages (if MIMALLOC_LARGE_OS_PAGES is true).
----------------------------------------------------------- */
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
static bool mi_os_is_huge_reserved(void* p);
static void* mi_os_alloc_from_huge_reserved(size_t size, size_t try_alignment, bool commit);
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats);
bool _mi_os_is_huge_reserved(void* p);
void* _mi_os_try_alloc_from_huge_reserved(size_t size, size_t try_alignment);
static void* mi_align_up_ptr(void* p, size_t alignment) {
return (void*)_mi_align_up((uintptr_t)p, alignment);
@ -77,11 +76,16 @@ static bool use_large_os_page(size_t size, size_t alignment) {
return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0);
}
// round to a good allocation size
static size_t mi_os_good_alloc_size(size_t size, size_t alignment) {
UNUSED(alignment);
if (size >= (SIZE_MAX - os_alloc_granularity)) return size; // possible overflow?
return _mi_align_up(size, os_alloc_granularity);
// round to a good OS allocation size (bounded by max 12.5% waste)
size_t _mi_os_good_alloc_size(size_t size) {
size_t align_size;
if (size < 512*KiB) align_size = _mi_os_page_size();
else if (size < 2*MiB) align_size = 64*KiB;
else if (size < 8*MiB) align_size = 256*KiB;
else if (size < 32*MiB) align_size = 1*MiB;
else align_size = 4*MiB;
if (size >= (SIZE_MAX - align_size)) return size; // possible overflow?
return _mi_align_up(size, align_size);
}
#if defined(_WIN32)
@ -95,6 +99,41 @@ typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*
static PVirtualAlloc2 pVirtualAlloc2 = NULL;
static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL;
static bool mi_win_enable_large_os_pages()
{
if (large_os_page_size > 0) return true;
// Try to see if large OS pages are supported
// To use large pages on Windows, we first need access permission
// Set "Lock pages in memory" permission in the group policy editor
// <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
unsigned long err = 0;
HANDLE token = NULL;
BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
if (ok) {
TOKEN_PRIVILEGES tp;
ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid);
if (ok) {
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
if (ok) {
err = GetLastError();
ok = (err == ERROR_SUCCESS);
if (ok) {
large_os_page_size = GetLargePageMinimum();
}
}
}
CloseHandle(token);
}
if (!ok) {
if (err == 0) err = GetLastError();
_mi_warning_message("cannot enable large OS page support, error %lu\n", err);
}
return (ok!=0);
}
void _mi_os_init(void) {
// get the page size
SYSTEM_INFO si;
@ -111,40 +150,12 @@ void _mi_os_init(void) {
FreeLibrary(hDll);
}
hDll = LoadLibrary(TEXT("ntdll.dll"));
if (hDll != NULL) {
if (hDll != NULL) {
pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
FreeLibrary(hDll);
}
// Try to see if large OS pages are supported
unsigned long err = 0;
bool ok = mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages);
if (ok) {
// To use large pages on Windows, we first need access permission
// Set "Lock pages in memory" permission in the group policy editor
// <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
HANDLE token = NULL;
ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token) != 0;
if (ok) {
TOKEN_PRIVILEGES tp;
ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid) != 0;
if (ok) {
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0) != 0;
if (ok) {
err = GetLastError();
ok = (err == ERROR_SUCCESS);
if (ok) {
large_os_page_size = GetLargePageMinimum();
}
}
}
CloseHandle(token);
}
if (!ok) {
if (err == 0) err = GetLastError();
_mi_warning_message("cannot enable large OS page support, error %lu\n", err);
}
if (mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
mi_win_enable_large_os_pages();
}
}
#elif defined(__wasi__)
@ -171,9 +182,9 @@ void _mi_os_init() {
Raw allocation on Windows (VirtualAlloc) and Unix's (mmap).
----------------------------------------------------------- */
static bool mi_os_mem_free(void* addr, size_t size, mi_stats_t* stats)
static bool mi_os_mem_free(void* addr, size_t size, bool was_committed, mi_stats_t* stats)
{
if (addr == NULL || size == 0 || mi_os_is_huge_reserved(addr)) return true;
if (addr == NULL || size == 0 || _mi_os_is_huge_reserved(addr)) return true;
bool err = false;
#if defined(_WIN32)
err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
@ -182,7 +193,7 @@ static bool mi_os_mem_free(void* addr, size_t size, mi_stats_t* stats)
#else
err = (munmap(addr, size) == -1);
#endif
_mi_stat_decrease(&stats->committed, size); // TODO: what if never committed?
if (was_committed) _mi_stat_decrease(&stats->committed, size);
_mi_stat_decrease(&stats->reserved, size);
if (err) {
#pragma warning(suppress:4996)
@ -194,12 +205,14 @@ static bool mi_os_mem_free(void* addr, size_t size, mi_stats_t* stats)
}
}
static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size);
#ifdef _WIN32
static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment, DWORD flags) {
#if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
// on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages
if ((size % ((uintptr_t)1 << 30)) == 0 /* 1GiB multiple */
&& (flags & MEM_LARGE_PAGES) != 0 && (flags & MEM_COMMIT) != 0
&& (flags & MEM_LARGE_PAGES) != 0 && (flags & MEM_COMMIT) != 0 && (flags & MEM_RESERVE) != 0
&& (addr != NULL || try_alignment == 0 || try_alignment % _mi_os_page_size() == 0)
&& pNtAllocateVirtualMemoryEx != NULL)
{
@ -211,7 +224,7 @@ static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment
param.ULong64 = MEM_EXTENDED_PARAMETER_NONPAGED_HUGE;
SIZE_T psize = size;
void* base = addr;
NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags | MEM_RESERVE, PAGE_READWRITE, &param, 1);
NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, &param, 1);
if (err == 0) {
return base;
}
@ -221,19 +234,14 @@ static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment
}
}
#endif
#if (MI_INTPTR_SIZE >= 8)
// on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations
static volatile _Atomic(intptr_t) aligned_base = ATOMIC_VAR_INIT((intptr_t)4 << 40); // starting at 4TiB
if (addr == NULL && try_alignment > 0 &&
try_alignment <= MI_SEGMENT_SIZE && (size%MI_SEGMENT_SIZE) == 0)
{
intptr_t hint = mi_atomic_add(&aligned_base, size);
if (hint%try_alignment == 0) {
return VirtualAlloc((void*)hint, size, flags, PAGE_READWRITE);
}
#if (MI_INTPTR_SIZE >= 8)
// on 64-bit systems, try to use the virtual address area after 4TiB for 4MiB aligned allocations
void* hint;
if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment,size)) != NULL) {
return VirtualAlloc(hint, size, flags, PAGE_READWRITE);
}
#endif
#if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
#if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
// on modern Windows try use VirtualAlloc2 for aligned allocation
if (try_alignment > 0 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
MEM_ADDRESS_REQUIREMENTS reqs = { 0 };
@ -247,10 +255,12 @@ static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment
return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}
static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only) {
static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) {
mi_assert_internal(!(large_only && !allow_large));
static volatile _Atomic(uintptr_t) large_page_try_ok; // = 0;
void* p = NULL;
if (large_only || use_large_os_page(size, try_alignment)) {
if ((large_only || use_large_os_page(size, try_alignment))
&& allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) {
uintptr_t try_ok = mi_atomic_read(&large_page_try_ok);
if (!large_only && try_ok > 0) {
// if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
@ -259,7 +269,8 @@ static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment,
}
else {
// large OS pages must always reserve and commit.
p = mi_win_virtual_allocx(addr, size, try_alignment, MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE | flags);
*is_large = true;
p = mi_win_virtual_allocx(addr, size, try_alignment, flags | MEM_LARGE_PAGES);
if (large_only) return p;
// fall back to non-large page allocation on error (`p == NULL`).
if (p == NULL) {
@ -268,6 +279,7 @@ static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment,
}
}
if (p == NULL) {
*is_large = ((flags&MEM_LARGE_PAGES) != 0);
p = mi_win_virtual_allocx(addr, size, try_alignment, flags);
}
if (p == NULL) {
@ -295,14 +307,13 @@ static void* mi_unix_mmapx(void* addr, size_t size, size_t try_alignment, int pr
void* p = NULL;
#if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED)
// on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations
static volatile _Atomic(intptr_t) aligned_base = ATOMIC_VAR_INIT((intptr_t)1 << 42); // starting at 4TiB
if (addr==NULL && try_alignment <= MI_SEGMENT_SIZE && (size%MI_SEGMENT_SIZE)==0) {
intptr_t hint = mi_atomic_add(&aligned_base,size);
if (hint%try_alignment == 0) {
p = mmap((void*)hint,size,protect_flags,flags,fd,0);
if (p==MAP_FAILED) p = NULL; // fall back to regular mmap
}
void* hint;
if (addr == NULL && (hint = mi_os_get_aligned_hint(try_alignment, size)) != NULL) {
p = mmap(hint,size,protect_flags,flags,fd,0);
if (p==MAP_FAILED) p = NULL; // fall back to regular mmap
}
#else
UNUSED(try_alignment);
#endif
if (p==NULL) {
p = mmap(addr,size,protect_flags,flags,fd,0);
@ -311,7 +322,7 @@ static void* mi_unix_mmapx(void* addr, size_t size, size_t try_alignment, int pr
return p;
}
static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only) {
static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int protect_flags, bool large_only, bool allow_large, bool* is_large) {
void* p = NULL;
#if !defined(MAP_ANONYMOUS)
#define MAP_ANONYMOUS MAP_ANON
@ -331,9 +342,11 @@ static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int pro
#endif
#if defined(VM_MAKE_TAG)
// macOS: tracking anonymous page with a specific ID. (All up to 98 are taken officially but LLVM sanitizers had taken 99)
fd = VM_MAKE_TAG(100);
int os_tag = (int)mi_option_get(mi_option_os_tag);
if (os_tag < 100 || os_tag > 255) os_tag = 100;
fd = VM_MAKE_TAG(os_tag);
#endif
if (large_only || use_large_os_page(size, try_alignment)) {
if ((large_only || use_large_os_page(size, try_alignment)) && allow_large) {
static volatile _Atomic(uintptr_t) large_page_try_ok; // = 0;
uintptr_t try_ok = mi_atomic_read(&large_page_try_ok);
if (!large_only && try_ok > 0) {
@ -368,6 +381,7 @@ static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int pro
#endif
if (large_only || lflags != flags) {
// try large OS page allocation
*is_large = true;
p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, lflags, lfd);
#ifdef MAP_HUGE_1GB
if (p == NULL && (lflags & MAP_HUGE_1GB) != 0) {
@ -384,7 +398,8 @@ static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int pro
}
}
if (p == NULL) {
p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, flags, fd);
*is_large = false;
p = mi_unix_mmapx(addr, size, try_alignment, protect_flags, flags, fd);
#if defined(MADV_HUGEPAGE)
// Many Linux systems don't allow MAP_HUGETLB but they support instead
// transparent huge pages (TPH). It is not required to call `madvise` with MADV_HUGE
@ -392,8 +407,10 @@ static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int pro
// in that case -- in particular for our large regions (in `memory.c`).
// However, some systems only allow TPH if called with explicit `madvise`, so
// when large OS pages are enabled for mimalloc, we call `madvice` anyways.
if (use_large_os_page(size, try_alignment)) {
madvise(p, size, MADV_HUGEPAGE);
if (allow_large && use_large_os_page(size, try_alignment)) {
if (madvise(p, size, MADV_HUGEPAGE) == 0) {
*is_large = true; // possibly
};
}
#endif
}
@ -401,29 +418,67 @@ static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int pro
}
#endif
// On 64-bit systems, we can do efficient aligned allocation by using
// the 4TiB to 30TiB area to allocate them.
#if (MI_INTPTR_SIZE >= 8) && (defined(_WIN32) || (defined(MI_OS_USE_MMAP) && !defined(MAP_ALIGNED)))
static volatile _Atomic(intptr_t) aligned_base;
// Return a 4MiB aligned address that is probably available
static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
if (try_alignment == 0 || try_alignment > MI_SEGMENT_SIZE) return NULL;
if ((size%MI_SEGMENT_SIZE) != 0) return NULL;
intptr_t hint = mi_atomic_add(&aligned_base, size);
if (hint == 0 || hint > ((intptr_t)30<<40)) { // try to wrap around after 30TiB (area after 32TiB is used for huge OS pages)
intptr_t init = ((intptr_t)4 << 40); // start at 4TiB area
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of aligned allocations unless in debug mode
uintptr_t r = _mi_random_init((uintptr_t)&mi_os_get_aligned_hint ^ hint);
init = init + (MI_SEGMENT_SIZE * ((r>>17) & 0xFFFF)); // (randomly 0-64k)*4MiB == 0 to 256GiB
#endif
mi_atomic_cas_strong(mi_atomic_cast(uintptr_t, &aligned_base), init, hint + size);
hint = mi_atomic_add(&aligned_base, size); // this may still give 0 or > 30TiB but that is ok, it is a hint after all
}
if (hint%try_alignment != 0) return NULL;
return (void*)hint;
}
#else
static void* mi_os_get_aligned_hint(size_t try_alignment, size_t size) {
UNUSED(try_alignment); UNUSED(size);
return NULL;
}
#endif
// Primitive allocation from the OS.
// Note: the `try_alignment` is just a hint and the returned pointer is not guaranteed to be aligned.
static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, mi_stats_t* stats) {
static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
if (size == 0) return NULL;
if (!commit) allow_large = false;
void* p = mi_os_alloc_from_huge_reserved(size, try_alignment, commit);
if (p != NULL) return p;
void* p = NULL;
if (commit && allow_large) {
p = _mi_os_try_alloc_from_huge_reserved(size, try_alignment);
if (p != NULL) {
*is_large = true;
return p;
}
}
#if defined(_WIN32)
int flags = MEM_RESERVE;
if (commit) flags |= MEM_COMMIT;
p = mi_win_virtual_alloc(NULL, size, try_alignment, flags, false);
p = mi_win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large);
#elif defined(__wasi__)
*is_large = false;
p = mi_wasm_heap_grow(size, try_alignment);
#else
int protect_flags = (commit ? (PROT_WRITE | PROT_READ) : PROT_NONE);
p = mi_unix_mmap(NULL, size, try_alignment, protect_flags, false);
p = mi_unix_mmap(NULL, size, try_alignment, protect_flags, false, allow_large, is_large);
#endif
_mi_stat_increase(&stats->mmap_calls, 1);
if (p != NULL) {
_mi_stat_increase(&stats->reserved, size);
if (commit) _mi_stat_increase(&stats->committed, size);
if (commit) { _mi_stat_increase(&stats->committed, size); }
}
return p;
}
@ -431,19 +486,20 @@ static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, mi_
// Primitive aligned allocation from the OS.
// This function guarantees the allocated memory is aligned.
static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, mi_stats_t* stats) {
static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, bool allow_large, bool* is_large, mi_stats_t* stats) {
mi_assert_internal(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0));
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
if (!commit) allow_large = false;
if (!(alignment >= _mi_os_page_size() && ((alignment & (alignment - 1)) == 0))) return NULL;
size = _mi_align_up(size, _mi_os_page_size());
// try first with a hint (this will be aligned directly on Win 10+ or BSD)
void* p = mi_os_mem_alloc(size, alignment, commit, stats);
void* p = mi_os_mem_alloc(size, alignment, commit, allow_large, is_large, stats);
if (p == NULL) return NULL;
// if not aligned, free it, overallocate, and unmap around it
if (((uintptr_t)p % alignment != 0)) {
mi_os_mem_free(p, size, stats);
mi_os_mem_free(p, size, commit, stats);
if (size >= (SIZE_MAX - alignment)) return NULL; // overflow
size_t over_size = size + alignment;
@ -457,7 +513,7 @@ static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit,
if (commit) flags |= MEM_COMMIT;
for (int tries = 0; tries < 3; tries++) {
// over-allocate to determine a virtual memory range
p = mi_os_mem_alloc(over_size, alignment, commit, stats);
p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats);
if (p == NULL) return NULL; // error
if (((uintptr_t)p % alignment) == 0) {
// if p happens to be aligned, just decommit the left-over area
@ -466,19 +522,19 @@ static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit,
}
else {
// otherwise free and allocate at an aligned address in there
mi_os_mem_free(p, over_size, stats);
mi_os_mem_free(p, over_size, commit, stats);
void* aligned_p = mi_align_up_ptr(p, alignment);
p = mi_win_virtual_alloc(aligned_p, size, alignment, flags, false);
p = mi_win_virtual_alloc(aligned_p, size, alignment, flags, false, allow_large, is_large);
if (p == aligned_p) break; // success!
if (p != NULL) { // should not happen?
mi_os_mem_free(p, size, stats);
mi_os_mem_free(p, size, commit, stats);
p = NULL;
}
}
}
#else
// overallocate...
p = mi_os_mem_alloc(over_size, alignment, commit, stats);
p = mi_os_mem_alloc(over_size, alignment, commit, false, is_large, stats);
if (p == NULL) return NULL;
// and selectively unmap parts around the over-allocated area.
void* aligned_p = mi_align_up_ptr(p, alignment);
@ -486,8 +542,8 @@ static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit,
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
size_t post_size = over_size - pre_size - mid_size;
mi_assert_internal(pre_size < over_size && post_size < over_size && mid_size >= size);
if (pre_size > 0) mi_os_mem_free(p, pre_size, stats);
if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, stats);
if (pre_size > 0) mi_os_mem_free(p, pre_size, commit, stats);
if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, commit, stats);
// we can return the aligned pointer on `mmap` systems
p = aligned_p;
#endif
@ -503,22 +559,32 @@ static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit,
void* _mi_os_alloc(size_t size, mi_stats_t* stats) {
if (size == 0) return NULL;
size = mi_os_good_alloc_size(size, 0);
return mi_os_mem_alloc(size, 0, true, stats);
size = _mi_os_good_alloc_size(size);
bool is_large = false;
return mi_os_mem_alloc(size, 0, true, false, &is_large, stats);
}
void _mi_os_free_ex(void* p, size_t size, bool was_committed, mi_stats_t* stats) {
if (size == 0 || p == NULL) return;
size = _mi_os_good_alloc_size(size);
mi_os_mem_free(p, size, was_committed, stats);
}
void _mi_os_free(void* p, size_t size, mi_stats_t* stats) {
if (size == 0 || p == NULL) return;
size = mi_os_good_alloc_size(size, 0);
mi_os_mem_free(p, size, stats);
_mi_os_free_ex(p, size, true, stats);
}
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, mi_os_tld_t* tld)
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, bool* large, mi_os_tld_t* tld)
{
if (size == 0) return NULL;
size = mi_os_good_alloc_size(size, alignment);
size = _mi_os_good_alloc_size(size);
alignment = _mi_align_up(alignment, _mi_os_page_size());
return mi_os_mem_alloc_aligned(size, alignment, commit, tld->stats);
bool allow_large = false;
if (large != NULL) {
allow_large = *large;
*large = false;
}
return mi_os_mem_alloc_aligned(size, alignment, commit, allow_large, (large!=NULL?large:&allow_large), tld->stats);
}
@ -555,11 +621,12 @@ static void* mi_os_page_align_area_conservative(void* addr, size_t size, size_t*
// Commit/Decommit memory.
// Usuelly commit is aligned liberal, while decommit is aligned conservative.
// (but not for the reset version where we want commit to be conservative as well)
static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservative, mi_stats_t* stats) {
static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservative, bool* is_zero, mi_stats_t* stats) {
// page align in the range, commit liberally, decommit conservative
*is_zero = false;
size_t csize;
void* start = mi_os_page_align_areax(conservative, addr, size, &csize);
if (csize == 0 || mi_os_is_huge_reserved(addr)) return true;
if (csize == 0 || _mi_os_is_huge_reserved(addr)) return true;
int err = 0;
if (commit) {
_mi_stat_increase(&stats->committed, csize);
@ -571,6 +638,8 @@ static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservativ
#if defined(_WIN32)
if (commit) {
// if the memory was already committed, the call succeeds but it is not zero'd
// *is_zero = true;
void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE);
err = (p == start ? 0 : GetLastError());
}
@ -582,6 +651,7 @@ static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservativ
// WebAssembly guests can't control memory protection
#else
err = mprotect(start, csize, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE));
if (err != 0) { err = errno; }
#endif
if (err != 0) {
_mi_warning_message("commit/decommit error: start: 0x%p, csize: 0x%x, err: %i\n", start, csize, err);
@ -590,16 +660,17 @@ static bool mi_os_commitx(void* addr, size_t size, bool commit, bool conservativ
return (err == 0);
}
bool _mi_os_commit(void* addr, size_t size, mi_stats_t* stats) {
return mi_os_commitx(addr, size, true, false /* conservative? */, stats);
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* stats) {
return mi_os_commitx(addr, size, true, false /* conservative? */, is_zero, stats);
}
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats) {
return mi_os_commitx(addr, size, false, true /* conservative? */, stats);
bool is_zero;
return mi_os_commitx(addr, size, false, true /* conservative? */, &is_zero, stats);
}
bool _mi_os_commit_unreset(void* addr, size_t size, mi_stats_t* stats) {
return mi_os_commitx(addr, size, true, true /* conservative? */, stats);
bool _mi_os_commit_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* stats) {
return mi_os_commitx(addr, size, true, true /* conservative? */, is_zero, stats);
}
@ -611,13 +682,13 @@ static bool mi_os_resetx(void* addr, size_t size, bool reset, mi_stats_t* stats)
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0 || mi_os_is_huge_reserved(addr)) return true;
if (csize == 0 || _mi_os_is_huge_reserved(addr)) return true;
if (reset) _mi_stat_increase(&stats->reset, csize);
else _mi_stat_decrease(&stats->reset, csize);
if (!reset) return true; // nothing to do on unreset!
#if (MI_DEBUG>1)
if (!mi_option_is_enabled(mi_option_secure)) {
if (MI_SECURE==0) {
memset(start, 0, csize); // pretend it is eagerly reset
}
#endif
@ -626,6 +697,11 @@ static bool mi_os_resetx(void* addr, size_t size, bool reset, mi_stats_t* stats)
// Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory
void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
mi_assert_internal(p == start);
#if 1
if (p == start) {
VirtualUnlock(start,csize); // VirtualUnlock after MEM_RESET removes the memory from the working set
}
#endif
if (p != start) return false;
#else
#if defined(MADV_FREE)
@ -663,11 +739,12 @@ bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
}
}
bool _mi_os_unreset(void* addr, size_t size, mi_stats_t* stats) {
bool _mi_os_unreset(void* addr, size_t size, bool* is_zero, mi_stats_t* stats) {
if (mi_option_is_enabled(mi_option_reset_decommits)) {
return _mi_os_commit_unreset(addr, size, stats); // re-commit it (conservatively!)
return _mi_os_commit_unreset(addr, size, is_zero, stats); // re-commit it (conservatively!)
}
else {
*is_zero = false;
return mi_os_resetx(addr, size, false, stats);
}
}
@ -679,8 +756,8 @@ static bool mi_os_protectx(void* addr, size_t size, bool protect) {
size_t csize = 0;
void* start = mi_os_page_align_area_conservative(addr, size, &csize);
if (csize == 0) return false;
if (mi_os_is_huge_reserved(addr)) {
_mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
if (_mi_os_is_huge_reserved(addr)) {
_mi_warning_message("cannot mprotect memory allocated in huge OS pages\n");
}
int err = 0;
#ifdef _WIN32
@ -691,6 +768,7 @@ static bool mi_os_protectx(void* addr, size_t size, bool protect) {
err = 0;
#else
err = mprotect(start, csize, protect ? PROT_NONE : (PROT_READ | PROT_WRITE));
if (err != 0) { err = errno; }
#endif
if (err != 0) {
_mi_warning_message("mprotect error: start: 0x%p, csize: 0x%x, err: %i\n", start, csize, err);
@ -724,43 +802,44 @@ bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize, mi_stats_t* stats) {
// we cannot shrink on windows, but we can decommit
return _mi_os_decommit(start, size, stats);
#else
return mi_os_mem_free(start, size, stats);
return mi_os_mem_free(start, size, true, stats);
#endif
}
/* ----------------------------------------------------------------------------
Support for huge OS pages (1Gib) that are reserved up-front and never
released. Only regions are allocated in here (see `memory.c`) so the memory
will be reused.
-----------------------------------------------------------------------------*/
#define MI_HUGE_OS_PAGE_SIZE ((size_t)1 << 30) // 1GiB
typedef struct mi_huge_info_s {
volatile _Atomic(void*) start;
volatile _Atomic(size_t) reserved;
volatile _Atomic(size_t) used;
volatile _Atomic(void*) start; // start of huge page area (32TiB)
volatile _Atomic(size_t) reserved; // total reserved size
volatile _Atomic(size_t) used; // currently allocated
} mi_huge_info_t;
static mi_huge_info_t os_huge_reserved = { NULL, 0, ATOMIC_VAR_INIT(0) };
static bool mi_os_is_huge_reserved(void* p) {
return (mi_atomic_read_ptr(&os_huge_reserved.start) != NULL &&
bool _mi_os_is_huge_reserved(void* p) {
return (mi_atomic_read_ptr(&os_huge_reserved.start) != NULL &&
p >= mi_atomic_read_ptr(&os_huge_reserved.start) &&
(uint8_t*)p < (uint8_t*)mi_atomic_read_ptr(&os_huge_reserved.start) + mi_atomic_read(&os_huge_reserved.reserved));
}
static void* mi_os_alloc_from_huge_reserved(size_t size, size_t try_alignment, bool commit)
void* _mi_os_try_alloc_from_huge_reserved(size_t size, size_t try_alignment)
{
// only allow large aligned allocations
// only allow large aligned allocations (e.g. regions)
if (size < MI_SEGMENT_SIZE || (size % MI_SEGMENT_SIZE) != 0) return NULL;
if (try_alignment > MI_SEGMENT_SIZE) return NULL;
if (!commit) return NULL;
if (mi_atomic_read_ptr(&os_huge_reserved.start)==NULL) return NULL;
if (mi_atomic_read(&os_huge_reserved.used) >= mi_atomic_read(&os_huge_reserved.reserved)) return NULL; // already full
// always aligned
mi_assert_internal(mi_atomic_read(&os_huge_reserved.used) % MI_SEGMENT_SIZE == 0 );
mi_assert_internal( (uintptr_t)mi_atomic_read_ptr(&os_huge_reserved.start) % MI_SEGMENT_SIZE == 0 );
// try to reserve space
size_t base = mi_atomic_addu( &os_huge_reserved.used, size );
if ((base + size) > os_huge_reserved.reserved) {
@ -791,37 +870,45 @@ static void mi_os_free_huge_reserved() {
int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept {
UNUSED(pages); UNUSED(max_secs);
if (pages_reserved != NULL) *pages_reserved = 0;
return ENOMEM; // cannot allocate
return ENOMEM;
}
#else
int mi_reserve_huge_os_pages( size_t pages, double max_secs, size_t* pages_reserved ) mi_attr_noexcept
{
if (pages_reserved != NULL) *pages_reserved = 0;
if (max_secs==0) return ETIMEDOUT; // timeout
if (max_secs==0) return ETIMEDOUT; // timeout
if (pages==0) return 0; // ok
if (!mi_atomic_cas_ptr_strong(&os_huge_reserved.start,(void*)1,NULL)) return -2; // already reserved
if (!mi_atomic_cas_ptr_strong(&os_huge_reserved.start,(void*)1,NULL)) return ETIMEDOUT; // already reserved
// Set the start address after the 32TiB area
uint8_t* start = (uint8_t*)((uintptr_t)32 << 40); // 32TiB virtual start address
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
uintptr_t r = _mi_random_init((uintptr_t)&mi_reserve_huge_os_pages);
start = start + ((uintptr_t)MI_SEGMENT_SIZE * ((r>>17) & 0xFFFF)); // (randomly 0-64k)*4MiB == 0 to 256GiB
#endif
// Allocate one page at the time but try to place them contiguously
// We allocate one page at the time to be able to abort if it takes too long
double start_t = _mi_clock_start();
uint8_t* start = (uint8_t*)((uintptr_t)16 << 40); // 16TiB virtual start address
uint8_t* addr = start; // current top of the allocations
for (size_t page = 0; page < pages; page++, addr += MI_HUGE_OS_PAGE_SIZE ) {
// allocate a page
void* p = NULL;
void* p = NULL;
bool is_large = true;
#ifdef _WIN32
p = mi_win_virtual_alloc(addr, MI_HUGE_OS_PAGE_SIZE, 0, MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE, true);
if (page==0) { mi_win_enable_large_os_pages(); }
p = mi_win_virtual_alloc(addr, MI_HUGE_OS_PAGE_SIZE, 0, MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE, true, true, &is_large);
#elif defined(MI_OS_USE_MMAP)
p = mi_unix_mmap(addr, MI_HUGE_OS_PAGE_SIZE, 0, PROT_READ | PROT_WRITE, true);
#else
p = mi_unix_mmap(addr, MI_HUGE_OS_PAGE_SIZE, 0, PROT_READ | PROT_WRITE, true, true, &is_large);
#else
// always fail
#endif
#endif
// Did we succeed at a contiguous address?
if (p != addr) {
// no success, issue a warning and return with an error
// no success, issue a warning and return with an error
if (p != NULL) {
_mi_warning_message("could not allocate contiguous huge page %zu at 0x%p\n", page, addr);
_mi_warning_message("could not allocate contiguous huge page %zu at 0x%p\n", page, addr);
_mi_os_free(p, MI_HUGE_OS_PAGE_SIZE, &_mi_stats_main );
}
else {
@ -832,30 +919,29 @@ int mi_reserve_huge_os_pages( size_t pages, double max_secs, size_t* pages_reser
#endif
_mi_warning_message("could not allocate huge page %zu at 0x%p, error: %i\n", page, addr, err);
}
return ENOMEM;
return ENOMEM;
}
// success, record it
if (page==0) {
mi_atomic_write_ptr(&os_huge_reserved.start, addr);
mi_atomic_write_ptr(&os_huge_reserved.start, addr); // don't switch the order of these writes
mi_atomic_write(&os_huge_reserved.reserved, MI_HUGE_OS_PAGE_SIZE);
}
else {
mi_atomic_addu(&os_huge_reserved.reserved,MI_HUGE_OS_PAGE_SIZE);
}
_mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
_mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
_mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);
if (pages_reserved != NULL) { *pages_reserved = page + 1; };
if (pages_reserved != NULL) { *pages_reserved = page + 1; }
// check for timeout
double elapsed = _mi_clock_end(start_t);
if (elapsed > max_secs) return (-1); // timeout
if (elapsed > max_secs) return ETIMEDOUT;
if (page >= 1) {
double estimate = ((elapsed / (double)(page+1)) * (double)pages);
if (estimate > 1.5*max_secs) return (-1); // seems like we are going to timeout
if (estimate > 1.5*max_secs) return ETIMEDOUT; // seems like we are going to timeout
}
}
}
_mi_verbose_message("reserved %zu huge pages\n", pages);
return 0;
}
#endif