merge from dev3

This commit is contained in:
daanx 2024-12-22 14:40:46 -08:00
commit 6b97830f6a
8 changed files with 327 additions and 84 deletions

View file

@ -91,7 +91,7 @@ endif()
if (CMAKE_GENERATOR MATCHES "^Visual Studio.*$")
message(STATUS "Note: when building with Visual Studio the build type is specified when building.")
message(STATUS "For example: 'cmake --build . --config=Release")
message(STATUS "For example: 'cmake --build . --config=Release")
endif()
if("${CMAKE_BINARY_DIR}" MATCHES ".*(S|s)ecure$")
@ -401,9 +401,9 @@ if(CMAKE_C_COMPILER_ID MATCHES "AppleClang|Clang|GNU|Intel")
endif()
if(MI_OPT_ARCH)
if(MI_ARCH STREQUAL "x64")
set(MI_OPT_ARCH_FLAGS "-march=haswell;-mavx2") # fast bit scan (since 2013)
set(MI_OPT_ARCH_FLAGS "-march=haswell;-mavx2;-mtune=native") # fast bit scan (since 2013)
elseif(MI_ARCH STREQUAL "arm64")
set(MI_OPT_ARCH_FLAGS "-march=armv8.1-a") # fast atomics (since 2016)
set(MI_OPT_ARCH_FLAGS "-march=armv8.1-a;-mtune=native") # fast atomics (since 2016)
endif()
endif()
endif()
@ -557,7 +557,7 @@ if(MI_BUILD_SHARED)
elseif(MI_ARCH STREQUAL "x64")
set(MIMALLOC_REDIRECT_SUFFIX "")
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "ARM64")
message(STATUS "Note: x64 code emulated on Windows for arm64 should use an arm64ec build of 'mimalloc-override.dll'")
message(STATUS "Note: x64 code emulated on Windows for arm64 should use an arm64ec build of 'mimalloc-override.dll'")
message(STATUS " with 'mimalloc-redirect-arm64ec.dll'. See the 'bin\\readme.md' for more information.")
endif()
elseif(MI_ARCH STREQUAL "x86")
@ -681,7 +681,7 @@ endif()
# -----------------------------------------------------------------------------
if (MI_OVERRIDE)
if (MI_BUILD_SHARED)
target_compile_definitions(mimalloc PRIVATE MI_MALLOC_OVERRIDE)
target_compile_definitions(mimalloc PRIVATE MI_MALLOC_OVERRIDE)
endif()
if(NOT WIN32)
# It is only possible to override malloc on Windows when building as a DLL.

View file

@ -107,6 +107,26 @@ typedef int32_t mi_ssize_t;
// Define big endian if needed
// #define MI_BIG_ENDIAN 1
// maximum virtual address bits in a user-space pointer
#if MI_DEFAULT_VIRTUAL_ADDRESS_BITS > 0
#define MI_MAX_VABITS MI_DEFAULT_VIRTUAL_ADDRESS_BITS
#elif MI_ARCH_X64
#define MI_MAX_VABITS (47)
#elif MI_INTPTR_SIZE > 4
#define MI_MAX_VABITS (48)
#else
#define MI_MAX_VABITS (32)
#endif
// use a flat page-map (or a 2-level one)
#ifndef MI_PAGE_MAP_FLAT
#if MI_MAX_VABITS <= 40
#define MI_PAGE_MAP_FLAT 1
#else
#define MI_PAGE_MAP_FLAT 0
#endif
#endif
/* --------------------------------------------------------------------------------
Builtin's

View file

@ -169,6 +169,7 @@ bool _mi_page_map_init(void);
void _mi_page_map_register(mi_page_t* page);
void _mi_page_map_unregister(mi_page_t* page);
void _mi_page_map_unregister_range(void* start, size_t size);
mi_page_t* _mi_safe_ptr_page(const void* p);
// "page.c"
void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept mi_attr_malloc;
@ -422,6 +423,14 @@ static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
return (heap != &_mi_heap_empty);
}
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
const size_t idx = _mi_wsize_from_size(size);
mi_assert_internal(idx < MI_PAGES_DIRECT);
return heap->pages_free_direct[idx];
}
//static inline uintptr_t _mi_ptr_cookie(const void* p) {
// extern mi_heap_t _mi_heap_main;
// mi_assert_internal(_mi_heap_main.cookie != 0);
@ -433,48 +442,78 @@ static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
Pages
----------------------------------------------------------- */
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
const size_t idx = _mi_wsize_from_size(size);
mi_assert_internal(idx < MI_PAGES_DIRECT);
return heap->pages_free_direct[idx];
}
#if MI_PAGE_MAP_FLAT
// flat page-map committed on demand
extern uint8_t* _mi_page_map;
static inline uintptr_t _mi_page_map_index(const void* p) {
return (((uintptr_t)p) >> MI_ARENA_SLICE_SHIFT);
static inline size_t _mi_page_map_index(const void* p) {
return (size_t)((uintptr_t)p >> MI_ARENA_SLICE_SHIFT);
}
static inline mi_page_t* _mi_ptr_page_ex(const void* p, bool* valid) {
#if 1
const uintptr_t idx = _mi_page_map_index(p);
const size_t idx = _mi_page_map_index(p);
const size_t ofs = _mi_page_map[idx];
if (valid != NULL) *valid = (ofs != 0);
return (mi_page_t*)((idx - ofs + 1) << MI_ARENA_SLICE_SHIFT);
#else
const uintptr_t idx = _mi_page_map_index(p);
const uintptr_t up = idx << MI_ARENA_SLICE_SHIFT;
__builtin_prefetch((void*)up);
const size_t ofs = _mi_page_map[idx];
if (valid != NULL) *valid = (ofs != 0);
return (mi_page_t*)(up - ((ofs - 1) << MI_ARENA_SLICE_SHIFT));
#endif
if (valid != NULL) { *valid = (ofs != 0); }
return (mi_page_t*)((((uintptr_t)p >> MI_ARENA_SLICE_SHIFT) + 1 - ofs) << MI_ARENA_SLICE_SHIFT);
}
static inline mi_page_t* _mi_checked_ptr_page(const void* p) {
bool valid;
mi_page_t* const page = _mi_ptr_page_ex(p,&valid);
mi_page_t* const page = _mi_ptr_page_ex(p, &valid);
return (valid ? page : NULL);
}
static inline mi_page_t* _mi_unchecked_ptr_page(const void* p) {
return _mi_ptr_page_ex(p, NULL);
}
#else
// 2-level page map:
// The page-map is usually 4 MiB and points to sub maps of 64 KiB.
// The page-map is committed on-demand (in 64 KiB) parts (and sub-maps are committed on-demand as well)
// One sub page-map = 64 KiB => covers 2^13 * 2^16 = 2^32 = 512 MiB address space
// The page-map needs 48-16-13 = 19 bits => 2^19 sub map pointers = 4 MiB size.
// (Choosing a MI_PAGE_MAP_SUB_SHIFT of 16 gives slightly better code but will commit the initial sub-map at 512 KiB)
#define MI_PAGE_MAP_SUB_SHIFT (13)
#define MI_PAGE_MAP_SUB_COUNT (MI_ZU(1) << MI_PAGE_MAP_SUB_SHIFT)
#define MI_PAGE_MAP_SHIFT (MI_MAX_VABITS - MI_PAGE_MAP_SUB_SHIFT - MI_ARENA_SLICE_SHIFT)
#define MI_PAGE_MAP_COUNT (MI_ZU(1) << MI_PAGE_MAP_SHIFT)
extern mi_page_t*** _mi_page_map;
static inline size_t _mi_page_map_index(const void* p, size_t* sub_idx) {
const uintptr_t u = (uintptr_t)p / MI_ARENA_SLICE_SIZE;
if (sub_idx != NULL) { *sub_idx = (uint32_t)u % MI_PAGE_MAP_SUB_COUNT; }
return (size_t)(u / MI_PAGE_MAP_SUB_COUNT);
}
static inline mi_page_t* _mi_unchecked_ptr_page(const void* p) {
size_t sub_idx;
const size_t idx = _mi_page_map_index(p, &sub_idx);
return _mi_page_map[idx][sub_idx];
}
static inline mi_page_t* _mi_checked_ptr_page(const void* p) {
size_t sub_idx;
const size_t idx = _mi_page_map_index(p, &sub_idx);
mi_page_t** const sub = _mi_page_map[idx];
if mi_unlikely(sub == NULL) return NULL;
return sub[sub_idx];
}
#endif
static inline mi_page_t* _mi_ptr_page(const void* p) {
mi_assert_internal(p==NULL || mi_is_in_heap_region(p));
#if MI_DEBUG || defined(__APPLE__)
return _mi_checked_ptr_page(p);
#else
return _mi_ptr_page_ex(p,NULL);
return _mi_unchecked_ptr_page(p);
#endif
}
@ -591,7 +630,7 @@ static inline bool mi_page_immediate_available(const mi_page_t* page) {
return (page->free != NULL);
}
// is the page not yet used up to its reserved space?
static inline bool mi_page_is_expandable(const mi_page_t* page) {
mi_assert_internal(page != NULL);

View file

@ -25,7 +25,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define MI_META_PAGE_SIZE MI_ARENA_SLICE_SIZE
#define MI_META_PAGE_ALIGN MI_ARENA_SLICE_ALIGN
#define MI_META_BLOCK_SIZE (64)
#define MI_META_BLOCK_SIZE (128) // large enough such that META_MAX_SIZE > 4k (even on 32-bit)
#define MI_META_BLOCK_ALIGN MI_META_BLOCK_SIZE
#define MI_META_BLOCKS_PER_PAGE (MI_ARENA_SLICE_SIZE / MI_META_BLOCK_SIZE) // 1024
#define MI_META_MAX_SIZE (MI_BCHUNK_SIZE * MI_META_BLOCK_SIZE)

View file

@ -145,14 +145,14 @@ static inline mi_page_t* mi_checked_ptr_page(const void* p, const char* msg)
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
return NULL;
}
#endif
mi_page_t* const page = _mi_ptr_page(p);
#if MI_DEBUG
mi_page_t* const page = _mi_safe_ptr_page(p);
if (page == NULL && p != NULL) {
_mi_error_message(EINVAL, "%s: invalid pointer: %p\n", msg, p);
}
#endif
return page;
#else
return _mi_ptr_page(p);
#endif
}
// Free a block

View file

@ -346,6 +346,7 @@ static bool _mi_heap_page_destroy(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_
// mi_page_free(page,false);
page->next = NULL;
page->prev = NULL;
mi_page_set_heap(page, NULL);
_mi_arena_page_free(page);
return true; // keep going
@ -513,7 +514,7 @@ bool mi_heap_reload(mi_heap_t* heap, mi_arena_id_t arena_id) {
// reinit direct pages (as we may be in a different process)
mi_assert_internal(heap->page_count == 0);
for (int i = 0; i < MI_PAGES_DIRECT; i++) {
for (size_t i = 0; i < MI_PAGES_DIRECT; i++) {
heap->pages_free_direct[i] = (mi_page_t*)&_mi_page_empty;
}

View file

@ -9,46 +9,62 @@ terms of the MIT license. A copy of the license can be found in the file
#include "mimalloc/internal.h"
#include "bitmap.h"
#if MI_PAGE_MAP_FLAT
// The page-map contains a byte for each 64kb slice in the address space.
// For an address `a` where `ofs = _mi_page_map[a >> 16]`:
// 0 = unused
// 1 = the slice at `a & ~0xFFFF` is a mimalloc page.
// 1 < ofs <= 127 = the slice is part of a page, starting at `(((a>>16) - ofs - 1) << 16)`.
//
// 1 byte per slice => 1 TiB address space needs a 2^14 * 2^16 = 16 MiB page map.
// A full 256 TiB address space (48 bit) needs a 4 GiB page map.
// A full 4 GiB address space (32 bit) needs only a 64 KiB page map.
mi_decl_cache_align uint8_t* _mi_page_map = NULL;
static bool mi_page_map_all_committed = false;
static size_t mi_page_map_entries_per_commit_bit = MI_ARENA_SLICE_SIZE;
static void* mi_page_map_max_address = NULL;
static mi_memid_t mi_page_map_memid;
static void* mi_page_map_max_address = NULL;
static mi_memid_t mi_page_map_memid;
#define MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT MI_ARENA_SLICE_SIZE
static mi_bitmap_t* mi_page_map_commit; // one bit per committed 64 KiB entries
// (note: we need to initialize statically or otherwise C++ may run a default constructors after process initialization)
static mi_bitmap_t mi_page_map_commit = { MI_ATOMIC_VAR_INIT(MI_BITMAP_DEFAULT_CHUNK_COUNT),
{ 0 }, { {MI_ATOMIC_VAR_INIT(0)} }, {{{ MI_ATOMIC_VAR_INIT(0) }}} };
static void mi_page_map_ensure_committed(size_t idx, size_t slice_count);
bool _mi_page_map_init(void) {
size_t vbits = (size_t)mi_option_get_clamp(mi_option_max_vabits, 0, MI_SIZE_BITS);
size_t vbits = (size_t)mi_option_get_clamp(mi_option_max_vabits, 0, MI_SIZE_BITS);
if (vbits == 0) {
vbits = _mi_os_virtual_address_bits();
#if MI_ARCH_X64 // canonical address is limited to the first 128 TiB
if (vbits >= 48) { vbits = 47; }
#endif
}
// 1 byte per block = 2 GiB for 128 TiB address space (48 bit = 256 TiB address space)
// 64 KiB for 4 GiB address space (on 32-bit)
// Allocate the page map and commit bits
mi_page_map_max_address = (void*)(MI_PU(1) << vbits);
const size_t page_map_size = (MI_ZU(1) << (vbits - MI_ARENA_SLICE_SHIFT));
mi_page_map_entries_per_commit_bit = _mi_divide_up(page_map_size, MI_BITMAP_DEFAULT_BIT_COUNT);
// mi_bitmap_init(&mi_page_map_commit, MI_BITMAP_MIN_BIT_COUNT, true);
mi_page_map_all_committed = (page_map_size <= 1*MI_MiB || mi_option_is_enabled(mi_option_debug_commit_full_pagemap)); // _mi_os_has_overcommit(); // commit on-access on Linux systems?
_mi_page_map = (uint8_t*)_mi_os_alloc_aligned(page_map_size, 1, mi_page_map_all_committed, true, &mi_page_map_memid);
if (_mi_page_map==NULL) {
const bool commit = (page_map_size <= 1*MI_MiB || mi_option_is_enabled(mi_option_debug_commit_full_pagemap)); // _mi_os_has_overcommit(); // commit on-access on Linux systems?
const size_t commit_bits = _mi_divide_up(page_map_size, MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT);
const size_t bitmap_size = (commit ? 0 : mi_bitmap_size(commit_bits, NULL));
const size_t reserve_size = bitmap_size + page_map_size;
uint8_t* const base = (uint8_t*)_mi_os_alloc_aligned(reserve_size, 1, commit, true /* allow large */, &mi_page_map_memid);
if (base==NULL) {
_mi_error_message(ENOMEM, "unable to reserve virtual memory for the page map (%zu KiB)\n", page_map_size / MI_KiB);
return false;
}
if (mi_page_map_memid.initially_committed && !mi_page_map_memid.initially_zero) {
_mi_warning_message("the page map was committed but not zero initialized!\n");
_mi_memzero_aligned(_mi_page_map, page_map_size);
_mi_warning_message("internal: the page map was committed but not zero initialized!\n");
_mi_memzero_aligned(base, reserve_size);
}
if (bitmap_size > 0) {
mi_page_map_commit = (mi_bitmap_t*)base;
_mi_os_commit(mi_page_map_commit, bitmap_size, NULL);
mi_bitmap_init(mi_page_map_commit, commit_bits, true);
}
_mi_page_map = base + bitmap_size;
// commit the first part so NULL pointers get resolved without an access violation
if (!mi_page_map_all_committed) {
bool is_zero;
_mi_os_commit(_mi_page_map, _mi_os_page_size(), &is_zero);
if (!is_zero && !mi_page_map_memid.initially_zero) { _mi_memzero(_mi_page_map, _mi_os_page_size()); }
if (!commit) {
mi_page_map_ensure_committed(0, 1);
}
_mi_page_map[0] = 1; // so _mi_ptr_page(NULL) == NULL
mi_assert_internal(_mi_ptr_page(NULL)==NULL);
@ -56,30 +72,31 @@ bool _mi_page_map_init(void) {
}
static void mi_page_map_ensure_committed(size_t idx, size_t slice_count) {
// is the page map area that contains the page address committed?
// is the page map area that contains the page address committed?
// we always set the commit bits so we can track what ranges are in-use.
// we only actually commit if the map wasn't committed fully already.
const size_t commit_bit_idx_lo = idx / mi_page_map_entries_per_commit_bit;
const size_t commit_bit_idx_hi = (idx + slice_count - 1) / mi_page_map_entries_per_commit_bit;
for (size_t i = commit_bit_idx_lo; i <= commit_bit_idx_hi; i++) { // per bit to avoid crossing over bitmap chunks
if (mi_bitmap_is_clearN(&mi_page_map_commit, i, 1)) {
// this may race, in which case we do multiple commits (which is ok)
if (!mi_page_map_all_committed) {
if (mi_page_map_commit != NULL) {
const size_t commit_idx = idx / MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT;
const size_t commit_idx_hi = (idx + slice_count - 1) / MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT;
for (size_t i = commit_idx; i <= commit_idx_hi; i++) { // per bit to avoid crossing over bitmap chunks
if (mi_bitmap_is_clear(mi_page_map_commit, i)) {
// this may race, in which case we do multiple commits (which is ok)
bool is_zero;
uint8_t* const start = _mi_page_map + (i*mi_page_map_entries_per_commit_bit);
const size_t size = mi_page_map_entries_per_commit_bit;
uint8_t* const start = _mi_page_map + (i * MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT);
const size_t size = MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT;
_mi_os_commit(start, size, &is_zero);
if (!is_zero && !mi_page_map_memid.initially_zero) { _mi_memzero(start, size); }
if (!is_zero && !mi_page_map_memid.initially_zero) { _mi_memzero(start, size); }
mi_bitmap_set(mi_page_map_commit, i);
}
mi_bitmap_set(&mi_page_map_commit, i);
}
}
#if MI_DEBUG > 0
_mi_page_map[idx] = 0;
_mi_page_map[idx+slice_count-1] = 0;
#endif
#endif
}
static size_t mi_page_map_get_idx(mi_page_t* page, uint8_t** page_start, size_t* slice_count) {
size_t page_size;
*page_start = mi_page_area(page, &page_size);
@ -88,11 +105,9 @@ static size_t mi_page_map_get_idx(mi_page_t* page, uint8_t** page_start, size_t*
return _mi_page_map_index(page);
}
void _mi_page_map_register(mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_internal(_mi_is_aligned(page,MI_PAGE_ALIGN));
mi_assert_internal(_mi_is_aligned(page, MI_PAGE_ALIGN));
mi_assert_internal(_mi_page_map != NULL); // should be initialized before multi-thread access!
if mi_unlikely(_mi_page_map == NULL) {
if (!_mi_page_map_init()) return;
@ -111,7 +126,6 @@ void _mi_page_map_register(mi_page_t* page) {
}
}
void _mi_page_map_unregister(mi_page_t* page) {
mi_assert_internal(_mi_page_map != NULL);
// get index and count
@ -129,16 +143,185 @@ void _mi_page_map_unregister_range(void* start, size_t size) {
_mi_memzero(&_mi_page_map[index], slice_count);
}
mi_page_t* _mi_safe_ptr_page(const void* p) {
if mi_unlikely(p >= mi_page_map_max_address) return NULL;
const uintptr_t idx = _mi_page_map_index(p);
if mi_unlikely(mi_page_map_commit != NULL && !mi_bitmap_is_set(mi_page_map_commit, idx/MI_PAGE_MAP_ENTRIES_PER_COMMIT_BIT)) return NULL;
const uintptr_t ofs = _mi_page_map[idx];
if mi_unlikely(ofs == 0) return NULL;
return (mi_page_t*)((((uintptr_t)p >> MI_ARENA_SLICE_SHIFT) - ofs + 1) << MI_ARENA_SLICE_SHIFT);
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
// if mi_unlikely(_mi_page_map==NULL) { // happens on macOS during loading
// _mi_page_map_init();
// }
if mi_unlikely(p >= mi_page_map_max_address) return false;
uintptr_t idx = ((uintptr_t)p >> MI_ARENA_SLICE_SHIFT);
if (mi_page_map_all_committed || mi_bitmap_is_setN(&mi_page_map_commit, idx/mi_page_map_entries_per_commit_bit, 1)) {
return (_mi_page_map[idx] != 0);
return (_mi_safe_ptr_page(p) != NULL);
}
#else
// A 2-level page map
mi_decl_cache_align mi_page_t*** _mi_page_map;
static void* mi_page_map_max_address;
static mi_memid_t mi_page_map_memid;
static _Atomic(mi_bfield_t) mi_page_map_commit;
static mi_page_t** mi_page_map_ensure_at(size_t idx);
static inline void mi_page_map_set_range(mi_page_t* page, size_t idx, size_t sub_idx, size_t slice_count);
bool _mi_page_map_init(void) {
size_t vbits = (size_t)mi_option_get_clamp(mi_option_max_vabits, 0, MI_SIZE_BITS);
if (vbits == 0) {
vbits = _mi_os_virtual_address_bits();
#if MI_ARCH_X64 // canonical address is limited to the first 128 TiB
if (vbits >= 48) { vbits = 47; }
#endif
}
else {
// Allocate the page map and commit bits
mi_assert(MI_MAX_VABITS >= vbits);
mi_page_map_max_address = (void*)(MI_PU(1) << vbits);
const size_t page_map_count = (MI_ZU(1) << (vbits - MI_PAGE_MAP_SUB_SHIFT - MI_ARENA_SLICE_SHIFT));
mi_assert(page_map_count <= MI_PAGE_MAP_COUNT);
const size_t os_page_size = _mi_os_page_size();
const size_t page_map_size = _mi_align_up( page_map_count * sizeof(mi_page_t**), os_page_size);
const size_t reserve_size = page_map_size + os_page_size;
const bool commit = page_map_size <= 64*MI_KiB || mi_option_is_enabled(mi_option_debug_commit_full_pagemap); // _mi_os_has_overcommit(); // commit on-access on Linux systems?
_mi_page_map = (mi_page_t***)_mi_os_alloc_aligned(reserve_size, 1, commit, true /* allow large */, &mi_page_map_memid);
if (_mi_page_map==NULL) {
_mi_error_message(ENOMEM, "unable to reserve virtual memory for the page map (%zu KiB)\n", page_map_size / MI_KiB);
return false;
}
if (mi_page_map_memid.initially_committed && !mi_page_map_memid.initially_zero) {
_mi_warning_message("internal: the page map was committed but not zero initialized!\n");
_mi_memzero_aligned(_mi_page_map, page_map_size);
}
mi_atomic_store_release(&mi_page_map_commit, (commit ? ~MI_ZU(0) : MI_ZU(0)));
// commit the first part so NULL pointers get resolved without an access violation
mi_page_map_ensure_at(0);
// note: for the NULL range we only commit one OS page
// mi_page_map_set_range(NULL, 0, 0, 1);
_mi_page_map[0] = (mi_page_t**)((uint8_t*)_mi_page_map + page_map_size);
if (!mi_page_map_memid.initially_committed) {
_mi_os_commit(_mi_page_map[0], os_page_size, NULL);
}
_mi_page_map[0][0] = NULL;
mi_assert_internal(_mi_ptr_page(NULL)==NULL);
return true;
}
#define MI_PAGE_MAP_ENTRIES_PER_CBIT (MI_PAGE_MAP_COUNT / MI_BFIELD_BITS)
static inline bool mi_page_map_is_committed(size_t idx, size_t* pbit_idx) {
mi_bfield_t commit = mi_atomic_load_relaxed(&mi_page_map_commit);
const size_t bit_idx = idx/MI_PAGE_MAP_ENTRIES_PER_CBIT;
mi_assert_internal(bit_idx < MI_BFIELD_BITS);
if (pbit_idx != NULL) { *pbit_idx = bit_idx; }
return ((commit & (MI_ZU(1) << bit_idx)) != 0);
}
static mi_page_t** mi_page_map_ensure_committed(size_t idx) {
size_t bit_idx;
if mi_unlikely(!mi_page_map_is_committed(idx, &bit_idx)) {
uint8_t* start = (uint8_t*)&_mi_page_map[bit_idx * MI_PAGE_MAP_ENTRIES_PER_CBIT];
_mi_os_commit(start, MI_PAGE_MAP_ENTRIES_PER_CBIT * sizeof(mi_page_t**), NULL);
mi_atomic_or_acq_rel(&mi_page_map_commit, MI_ZU(1) << bit_idx);
}
return _mi_page_map[idx];
}
static mi_page_t** mi_page_map_ensure_at(size_t idx) {
mi_page_t** sub = mi_page_map_ensure_committed(idx);
if mi_unlikely(sub == NULL) {
// sub map not yet allocated, alloc now
mi_memid_t memid;
sub = (mi_page_t**)_mi_os_alloc(MI_PAGE_MAP_SUB_COUNT * sizeof(mi_page_t*), &memid);
mi_page_t** expect = NULL;
if (!mi_atomic_cas_strong_acq_rel(((_Atomic(mi_page_t**)*)&_mi_page_map[idx]), &expect, sub)) {
// another thread already allocated it.. free and continue
_mi_os_free(sub, MI_PAGE_MAP_SUB_COUNT * sizeof(mi_page_t*), memid);
sub = expect;
mi_assert_internal(sub!=NULL);
}
if (sub == NULL) {
_mi_error_message(EFAULT, "internal error: unable to extend the page map\n");
}
}
return sub;
}
static void mi_page_map_set_range(mi_page_t* page, size_t idx, size_t sub_idx, size_t slice_count) {
// is the page map area that contains the page address committed?
while (slice_count > 0) {
mi_page_t** sub = mi_page_map_ensure_at(idx);
// set the offsets for the page
while (sub_idx < MI_PAGE_MAP_SUB_COUNT) {
sub[sub_idx] = page;
slice_count--; if (slice_count == 0) return;
sub_idx++;
}
idx++; // potentially wrap around to the next idx
sub_idx = 0;
}
}
static size_t mi_page_map_get_idx(mi_page_t* page, size_t* sub_idx, size_t* slice_count) {
size_t page_size;
uint8_t* page_start = mi_page_area(page, &page_size);
if (page_size > MI_LARGE_PAGE_SIZE) { page_size = MI_LARGE_PAGE_SIZE - MI_ARENA_SLICE_SIZE; } // furthest interior pointer
*slice_count = mi_slice_count_of_size(page_size) + ((page_start - (uint8_t*)page)/MI_ARENA_SLICE_SIZE); // add for large aligned blocks
return _mi_page_map_index(page, sub_idx);
}
void _mi_page_map_register(mi_page_t* page) {
mi_assert_internal(page != NULL);
mi_assert_internal(_mi_is_aligned(page, MI_PAGE_ALIGN));
mi_assert_internal(_mi_page_map != NULL); // should be initialized before multi-thread access!
if mi_unlikely(_mi_page_map == NULL) {
if (!_mi_page_map_init()) return;
}
mi_assert(_mi_page_map!=NULL);
size_t slice_count;
size_t sub_idx;
const size_t idx = mi_page_map_get_idx(page, &sub_idx, &slice_count);
mi_page_map_set_range(page, idx, sub_idx, slice_count);
}
void _mi_page_map_unregister(mi_page_t* page) {
mi_assert_internal(_mi_page_map != NULL);
// get index and count
size_t slice_count;
size_t sub_idx;
const size_t idx = mi_page_map_get_idx(page, &sub_idx, &slice_count);
// unset the offsets
mi_page_map_set_range(page, idx, sub_idx, slice_count);
}
void _mi_page_map_unregister_range(void* start, size_t size) {
const size_t slice_count = _mi_divide_up(size, MI_ARENA_SLICE_SIZE);
size_t sub_idx;
const uintptr_t idx = _mi_page_map_index(start, &sub_idx);
mi_page_map_set_range(NULL, idx, sub_idx, slice_count); // todo: avoid committing if not already committed?
}
mi_page_t* _mi_safe_ptr_page(const void* p) {
if mi_unlikely(p >= mi_page_map_max_address) return NULL;
size_t sub_idx;
const size_t idx = _mi_page_map_index(p,&sub_idx);
if mi_unlikely(!mi_page_map_is_committed(idx,NULL)) return NULL;
mi_page_t** const sub = _mi_page_map[idx];
if mi_unlikely(sub==NULL) return NULL;
return sub[sub_idx];
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return (_mi_safe_ptr_page(p) != NULL);
}
#endif

View file

@ -302,8 +302,8 @@ int main(int argc, char** argv) {
mi_option_enable(mi_option_visit_abandoned);
#endif
#if !defined(NDEBUG) && !defined(USE_STD_MALLOC)
// mi_option_set(mi_option_arena_reserve, 32 * 1024 /* in kib = 32MiB */);
mi_option_set(mi_option_purge_delay,10);
mi_option_set(mi_option_arena_reserve, 32 * 1024 /* in kib = 32MiB */);
//mi_option_set(mi_option_purge_delay,10);
#endif
#if defined(NDEBUG) && !defined(USE_STD_MALLOC)
// mi_option_set(mi_option_purge_delay,-1);