wip: use epoch with 512bit chunks

This commit is contained in:
daanx 2024-12-02 00:31:08 -08:00
parent 1d7a9f62a5
commit 69ac69abac
8 changed files with 574 additions and 256 deletions

View file

@ -145,20 +145,13 @@ typedef int32_t mi_ssize_t;
size_t _mi_clz_generic(size_t x);
size_t _mi_ctz_generic(size_t x);
uint32_t _mi_ctz_generic32(uint32_t x);
static inline size_t mi_ctz(size_t x) {
#if defined(__GNUC__) && MI_ARCH_X64 && defined(__BMI1__)
#if defined(__GNUC__) && MI_ARCH_X64 && defined(__BMI1__) // on x64 tzcnt is defined for 0
uint64_t r;
__asm volatile ("tzcnt\t%1, %0" : "=&r"(r) : "r"(x) : "cc");
return r;
#elif defined(__GNUC__) && MI_ARCH_ARM64
uint64_t r;
__asm volatile ("rbit\t%0, %1\n\tclz\t%0, %0" : "=&r"(r) : "r"(x) : "cc");
return r;
#elif defined(__GNUC__) && MI_ARCH_RISCV
size_t r;
__asm volatile ("ctz\t%0, %1" : "=&r"(r) : "r"(x) : );
return r;
#elif MI_ARCH_X64 && defined(__BMI1__)
return (size_t)_tzcnt_u64(x);
#elif defined(_MSC_VER) && (MI_ARCH_X64 || MI_ARCH_X86 || MI_ARCH_ARM64 || MI_ARCH_ARM32)
@ -168,6 +161,17 @@ static inline size_t mi_ctz(size_t x) {
#else
return (_BitScanForward64(&idx, x) ? (size_t)idx : 64);
#endif
/*
// for arm64 and riscv, the builtin_ctz is defined for 0 as well
#elif defined(__GNUC__) && MI_ARCH_ARM64
uint64_t r;
__asm volatile ("rbit\t%0, %1\n\tclz\t%0, %0" : "=&r"(r) : "r"(x) : "cc");
return r;
#elif defined(__GNUC__) && MI_ARCH_RISCV
size_t r;
__asm volatile ("ctz\t%0, %1" : "=&r"(r) : "r"(x) : );
return r;
*/
#elif mi_has_builtin_size(ctz)
return (x!=0 ? (size_t)mi_builtin_size(ctz)(x) : MI_SIZE_BITS);
#else
@ -177,18 +181,10 @@ static inline size_t mi_ctz(size_t x) {
}
static inline size_t mi_clz(size_t x) {
#if defined(__GNUC__) && MI_ARCH_X64 && defined(__BMI1__)
#if defined(__GNUC__) && MI_ARCH_X64 && defined(__BMI1__) // on x64 lzcnt is defined for 0
uint64_t r;
__asm volatile ("lzcnt\t%1, %0" : "=&r"(r) : "r"(x) : "cc");
return r;
#elif defined(__GNUC__) && MI_ARCH_ARM64
uint64_t r;
__asm volatile ("clz\t%0, %1" : "=&r"(r) : "r"(x) : "cc");
return r;
#elif defined(__GNUC__) && MI_ARCH_RISCV
size_t r;
__asm volatile ("clz\t%0, %1" : "=&r"(r) : "r"(x) : );
return r;
#elif MI_ARCH_X64 && defined(__BMI1__)
return (size_t)_lzcnt_u64(x);
#elif defined(_MSC_VER) && (MI_ARCH_X64 || MI_ARCH_X86 || MI_ARCH_ARM64 || MI_ARCH_ARM32)
@ -198,6 +194,17 @@ static inline size_t mi_clz(size_t x) {
#else
return (_BitScanReverse64(&idx, x) ? 63 - (size_t)idx : 64);
#endif
/*
// for arm64 and riscv, the builtin_clz is defined for 0 as well
#elif defined(__GNUC__) && MI_ARCH_ARM64
uint64_t r;
__asm volatile ("clz\t%0, %1" : "=&r"(r) : "r"(x) : "cc");
return r;
#elif defined(__GNUC__) && MI_ARCH_RISCV
size_t r;
__asm volatile ("clz\t%0, %1" : "=&r"(r) : "r"(x) : );
return r;
*/
#elif mi_has_builtin_size(clz)
return (x!=0 ? (size_t)mi_builtin_size(clz)(x) : MI_SIZE_BITS);
#else
@ -206,6 +213,26 @@ static inline size_t mi_clz(size_t x) {
#endif
}
static inline uint32_t mi_ctz32(uint32_t x) {
#if defined(__GNUC__) && MI_ARCH_X64 && defined(__BMI1__) // on x64 tzcnt is defined for 0
uint32_t r;
__asm volatile ("tzcntl\t%1, %0" : "=&r"(r) : "r"(x) : "cc");
return r;
#elif MI_ARCH_X64 && defined(__BMI1__)
return (uint32_t)_tzcnt_u32(x);
#elif defined(_MSC_VER) && (MI_ARCH_X64 || MI_ARCH_X86 || MI_ARCH_ARM64 || MI_ARCH_ARM32)
unsigned long idx;
return (_BitScanForward(&idx, x) ? (uint32_t)idx : 32);
#elif mi_has_builtin(ctz) && (INT_MAX == INT32_MAX)
return (x!=0 ? (uint32_t)mi_builtin(ctz)(x) : 32);
#elif mi_has_builtin(ctzl) && (LONG_MAX == INT32_MAX)
return (x!=0 ? (uint32_t)mi_builtin(ctzl)(x) : 32);
#else
#define MI_HAS_FAST_BITSCAN 0
return _mi_ctz_generic32(x);
#endif
}
#ifndef MI_HAS_FAST_BITSCAN
#define MI_HAS_FAST_BITSCAN 1
#endif
@ -229,6 +256,22 @@ static inline bool mi_bsf(size_t x, size_t* idx) {
#endif
}
// Bit scan forward: find the least significant bit that is set (i.e. count trailing zero's)
// return false if `x==0` (with `*idx` undefined) and true otherwise,
// with the `idx` is set to the bit index (`0 <= *idx < MI_BFIELD_BITS`).
static inline bool mi_bsf32(uint32_t x, uint32_t* idx) {
#if defined(__GNUC__) && MI_ARCH_X64 && defined(__BMI1__)
// on x64 the carry flag is set on zero which gives better codegen
bool is_zero;
__asm ("tzcntl\t%2, %1" : "=@ccc"(is_zero), "=r"(*idx) : "r"(x) : "cc");
return !is_zero;
#else
*idx = mi_ctz32(x);
return (x!=0);
#endif
}
// Bit scan reverse: find the most significant bit that is set
// return false if `x==0` (with `*idx` undefined) and true otherwise,
// with the `idx` is set to the bit index (`0 <= *idx < MI_BFIELD_BITS`).
@ -248,29 +291,6 @@ static inline bool mi_bsr(size_t x, size_t* idx) {
}
/* --------------------------------------------------------------------------------
find least/most significant bit position
-------------------------------------------------------------------------------- */
// Find most significant bit index, or MI_SIZE_BITS if 0
static inline size_t mi_find_msb(size_t x) {
#if defined(_MSC_VER) && (MI_ARCH_X64 || MI_ARCH_X86 || MI_ARCH_ARM64 || MI_ARCH_ARM32)
unsigned long i;
#if MI_SIZE_BITS==32
return (_BitScanReverse(&i, x) ? i : 32);
#else
return (_BitScanReverse64(&i, x) ? i : 64);
#endif
#else
return (x==0 ? MI_SIZE_BITS : MI_SIZE_BITS - 1 - mi_clz(x));
#endif
}
// Find least significant bit index, or MI_SIZE_BITS if 0 (this equals `mi_ctz`, count trailing zero's)
static inline size_t mi_find_lsb(size_t x) {
return mi_ctz(x);
}
/* --------------------------------------------------------------------------------
rotate
@ -288,13 +308,26 @@ static inline size_t mi_rotr(size_t x, size_t r) {
return _rotr64(x,(int)r);
#endif
#else
// The term `(-rshift)&(MI_BFIELD_BITS-1)` is written instead of `MI_BFIELD_BITS - rshift` to
// The term `(-rshift)&(BITS-1)` is written instead of `BITS - rshift` to
// avoid UB when `rshift==0`. See <https://blog.regehr.org/archives/1063>
const unsigned int rshift = (unsigned int)(r) & (MI_SIZE_BITS-1);
return ((x >> rshift) | (x << ((-rshift) & (MI_SIZE_BITS-1))));
#endif
}
static inline uint32_t mi_rotr32(uint32_t x, uint32_t r) {
#if mi_has_builtin(rotateright32)
return mi_builtin(rotateright32)(x, r);
#elif defined(_MSC_VER) && (MI_ARCH_X64 || MI_ARCH_X86 || MI_ARCH_ARM64 || MI_ARCH_ARM32)
return _lrotr(x, (int)r);
#else
// The term `(-rshift)&(BITS-1)` is written instead of `BITS - rshift` to
// avoid UB when `rshift==0`. See <https://blog.regehr.org/archives/1063>
const unsigned int rshift = (unsigned int)(r) & 31;
return ((x >> rshift) | (x << ((-rshift) & 31)));
#endif
}
static inline size_t mi_rotl(size_t x, size_t r) {
#if (mi_has_builtin(rotateleft64) && MI_SIZE_BITS==64)
return mi_builtin(rotateleft64)(x,r);
@ -307,7 +340,7 @@ static inline size_t mi_rotl(size_t x, size_t r) {
return _rotl64(x,(int)r);
#endif
#else
// The term `(-rshift)&(MI_BFIELD_BITS-1)` is written instead of `MI_BFIELD_BITS - rshift` to
// The term `(-rshift)&(BITS-1)` is written instead of `BITS - rshift` to
// avoid UB when `rshift==0`. See <https://blog.regehr.org/archives/1063>
const unsigned int rshift = (unsigned int)(r) & (MI_SIZE_BITS-1);
return ((x << rshift) | (x >> ((-rshift) & (MI_SIZE_BITS-1))));

View file

@ -120,7 +120,7 @@ terms of the MIT license. A copy of the license can be found in the file
#endif
#endif
#ifndef MI_BITMAP_CHUNK_BITS_SHIFT
#define MI_BITMAP_CHUNK_BITS_SHIFT 8 // optimized for 256 bits per chunk (avx2)
#define MI_BITMAP_CHUNK_BITS_SHIFT (6 + MI_SIZE_SHIFT) // optimized for 512 bits per chunk (avx512)
#endif
#define MI_BITMAP_CHUNK_BITS (1 << MI_BITMAP_CHUNK_BITS_SHIFT)