mirror of
https://github.com/microsoft/mimalloc.git
synced 2025-05-06 23:39:31 +03:00
delete old files
This commit is contained in:
parent
36bb599873
commit
67cc424ada
8 changed files with 0 additions and 3460 deletions
|
@ -1,357 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2019-2024, Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
#if !defined(MI_IN_ARENA_C)
|
||||
#error "this file should be included from 'arena.c' (so mi_arena_t is visible)"
|
||||
// add includes help an IDE
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc/internal.h"
|
||||
#include "bitmap.h"
|
||||
#endif
|
||||
|
||||
// Minimal exports for arena-abandoned.
|
||||
size_t mi_arena_id_index(mi_arena_id_t id);
|
||||
mi_arena_t* mi_arena_from_index(size_t idx);
|
||||
size_t mi_arena_get_count(void);
|
||||
void* mi_arena_block_start(mi_arena_t* arena, mi_bitmap_index_t bindex);
|
||||
bool mi_arena_memid_indices(mi_memid_t memid, size_t* arena_index, mi_bitmap_index_t* bitmap_index);
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Abandoned blocks/segments:
|
||||
|
||||
_mi_arena_segment_clear_abandoned
|
||||
_mi_arena_segment_mark_abandoned
|
||||
|
||||
This is used to atomically abandon/reclaim segments
|
||||
(and crosses the arena API but it is convenient to have here).
|
||||
|
||||
Abandoned segments still have live blocks; they get reclaimed
|
||||
when a thread frees a block in it, or when a thread needs a fresh
|
||||
segment.
|
||||
|
||||
Abandoned segments are atomically marked in the `block_abandoned`
|
||||
bitmap of arenas. Any segments allocated outside arenas are put
|
||||
in the sub-process `abandoned_os_list`. This list is accessed
|
||||
using locks but this should be uncommon and generally uncontended.
|
||||
Reclaim and visiting either scan through the `block_abandoned`
|
||||
bitmaps of the arena's, or visit the `abandoned_os_list`
|
||||
|
||||
A potentially nicer design is to use arena's for everything
|
||||
and perhaps have virtual arena's to map OS allocated memory
|
||||
but this would lack the "density" of our current arena's. TBC.
|
||||
----------------------------------------------------------- */
|
||||
|
||||
|
||||
// reclaim a specific OS abandoned segment; `true` on success.
|
||||
// sets the thread_id.
|
||||
static bool mi_arena_segment_os_clear_abandoned(mi_segment_t* segment, bool take_lock) {
|
||||
mi_assert(segment->memid.memkind != MI_MEM_ARENA);
|
||||
// not in an arena, remove from list of abandoned os segments
|
||||
mi_subproc_t* const subproc = segment->subproc;
|
||||
if (take_lock && !mi_lock_try_acquire(&subproc->abandoned_os_lock)) {
|
||||
return false; // failed to acquire the lock, we just give up
|
||||
}
|
||||
// remove atomically from the abandoned os list (if possible!)
|
||||
bool reclaimed = false;
|
||||
mi_segment_t* const next = segment->abandoned_os_next;
|
||||
mi_segment_t* const prev = segment->abandoned_os_prev;
|
||||
if (next != NULL || prev != NULL || subproc->abandoned_os_list == segment) {
|
||||
#if MI_DEBUG>3
|
||||
// find ourselves in the abandoned list (and check the count)
|
||||
bool found = false;
|
||||
size_t count = 0;
|
||||
for (mi_segment_t* current = subproc->abandoned_os_list; current != NULL; current = current->abandoned_os_next) {
|
||||
if (current == segment) { found = true; }
|
||||
count++;
|
||||
}
|
||||
mi_assert_internal(found);
|
||||
mi_assert_internal(count == mi_atomic_load_relaxed(&subproc->abandoned_os_list_count));
|
||||
#endif
|
||||
// remove (atomically) from the list and reclaim
|
||||
if (prev != NULL) { prev->abandoned_os_next = next; }
|
||||
else { subproc->abandoned_os_list = next; }
|
||||
if (next != NULL) { next->abandoned_os_prev = prev; }
|
||||
else { subproc->abandoned_os_list_tail = prev; }
|
||||
segment->abandoned_os_next = NULL;
|
||||
segment->abandoned_os_prev = NULL;
|
||||
mi_atomic_decrement_relaxed(&subproc->abandoned_count);
|
||||
mi_atomic_decrement_relaxed(&subproc->abandoned_os_list_count);
|
||||
if (take_lock) { // don't reset the thread_id when iterating
|
||||
mi_atomic_store_release(&segment->thread_id, _mi_thread_id());
|
||||
}
|
||||
reclaimed = true;
|
||||
}
|
||||
if (take_lock) { mi_lock_release(&segment->subproc->abandoned_os_lock); }
|
||||
return reclaimed;
|
||||
}
|
||||
|
||||
// reclaim a specific abandoned segment; `true` on success.
|
||||
// sets the thread_id.
|
||||
bool _mi_arena_segment_clear_abandoned(mi_segment_t* segment) {
|
||||
if mi_unlikely(segment->memid.memkind != MI_MEM_ARENA) {
|
||||
return mi_arena_segment_os_clear_abandoned(segment, true /* take lock */);
|
||||
}
|
||||
// arena segment: use the blocks_abandoned bitmap.
|
||||
size_t arena_idx;
|
||||
size_t bitmap_idx;
|
||||
mi_arena_memid_indices(segment->memid, &arena_idx, &bitmap_idx);
|
||||
mi_arena_t* arena = mi_arena_from_index(arena_idx);
|
||||
mi_assert_internal(arena != NULL);
|
||||
// reclaim atomically
|
||||
bool was_marked = _mi_bitmap_unclaim(arena->blocks_abandoned, arena->field_count, 1, bitmap_idx);
|
||||
if (was_marked) {
|
||||
mi_assert_internal(mi_atomic_load_acquire(&segment->thread_id) == 0);
|
||||
mi_atomic_decrement_relaxed(&segment->subproc->abandoned_count);
|
||||
mi_atomic_store_release(&segment->thread_id, _mi_thread_id());
|
||||
}
|
||||
// mi_assert_internal(was_marked);
|
||||
mi_assert_internal(!was_marked || _mi_bitmap_is_claimed(arena->blocks_inuse, arena->field_count, 1, bitmap_idx));
|
||||
//mi_assert_internal(arena->blocks_committed == NULL || _mi_bitmap_is_claimed(arena->blocks_committed, arena->field_count, 1, bitmap_idx));
|
||||
return was_marked;
|
||||
}
|
||||
|
||||
|
||||
// mark a specific OS segment as abandoned
|
||||
static void mi_arena_segment_os_mark_abandoned(mi_segment_t* segment) {
|
||||
mi_assert(segment->memid.memkind != MI_MEM_ARENA);
|
||||
// not in an arena; we use a list of abandoned segments
|
||||
mi_subproc_t* const subproc = segment->subproc;
|
||||
if (!mi_lock_acquire(&subproc->abandoned_os_lock)) {
|
||||
_mi_error_message(EFAULT, "internal error: failed to acquire the abandoned (os) segment lock to mark abandonment");
|
||||
// we can continue but cannot visit/reclaim such blocks..
|
||||
}
|
||||
else {
|
||||
// push on the tail of the list (important for the visitor)
|
||||
mi_segment_t* prev = subproc->abandoned_os_list_tail;
|
||||
mi_assert_internal(prev == NULL || prev->abandoned_os_next == NULL);
|
||||
mi_assert_internal(segment->abandoned_os_prev == NULL);
|
||||
mi_assert_internal(segment->abandoned_os_next == NULL);
|
||||
if (prev != NULL) { prev->abandoned_os_next = segment; }
|
||||
else { subproc->abandoned_os_list = segment; }
|
||||
subproc->abandoned_os_list_tail = segment;
|
||||
segment->abandoned_os_prev = prev;
|
||||
segment->abandoned_os_next = NULL;
|
||||
mi_atomic_increment_relaxed(&subproc->abandoned_os_list_count);
|
||||
mi_atomic_increment_relaxed(&subproc->abandoned_count);
|
||||
// and release the lock
|
||||
mi_lock_release(&subproc->abandoned_os_lock);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// mark a specific segment as abandoned
|
||||
// clears the thread_id.
|
||||
void _mi_arena_segment_mark_abandoned(mi_segment_t* segment)
|
||||
{
|
||||
mi_assert_internal(segment->used == segment->abandoned);
|
||||
mi_atomic_store_release(&segment->thread_id, (uintptr_t)0); // mark as abandoned for multi-thread free's
|
||||
if mi_unlikely(segment->memid.memkind != MI_MEM_ARENA) {
|
||||
mi_arena_segment_os_mark_abandoned(segment);
|
||||
return;
|
||||
}
|
||||
// segment is in an arena, mark it in the arena `blocks_abandoned` bitmap
|
||||
size_t arena_idx;
|
||||
size_t bitmap_idx;
|
||||
mi_arena_memid_indices(segment->memid, &arena_idx, &bitmap_idx);
|
||||
mi_arena_t* arena = mi_arena_from_index(arena_idx);
|
||||
mi_assert_internal(arena != NULL);
|
||||
// set abandonment atomically
|
||||
mi_subproc_t* const subproc = segment->subproc; // don't access the segment after setting it abandoned
|
||||
const bool was_unmarked = _mi_bitmap_claim(arena->blocks_abandoned, arena->field_count, 1, bitmap_idx, NULL);
|
||||
if (was_unmarked) { mi_atomic_increment_relaxed(&subproc->abandoned_count); }
|
||||
mi_assert_internal(was_unmarked);
|
||||
mi_assert_internal(_mi_bitmap_is_claimed(arena->blocks_inuse, arena->field_count, 1, bitmap_idx));
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Iterate through the abandoned blocks/segments using a cursor.
|
||||
This is used for reclaiming and abandoned block visiting.
|
||||
----------------------------------------------------------- */
|
||||
|
||||
// start a cursor at a randomized arena
|
||||
void _mi_arena_field_cursor_init(mi_heap_t* heap, mi_subproc_t* subproc, bool visit_all, mi_arena_field_cursor_t* current) {
|
||||
mi_assert_internal(heap == NULL || heap->tld->segments.subproc == subproc);
|
||||
current->bitmap_idx = 0;
|
||||
current->subproc = subproc;
|
||||
current->visit_all = visit_all;
|
||||
current->hold_visit_lock = false;
|
||||
const size_t abandoned_count = mi_atomic_load_relaxed(&subproc->abandoned_count);
|
||||
const size_t abandoned_list_count = mi_atomic_load_relaxed(&subproc->abandoned_os_list_count);
|
||||
const size_t max_arena = mi_arena_get_count();
|
||||
if (heap != NULL && heap->arena_id != _mi_arena_id_none()) {
|
||||
// for a heap that is bound to one arena, only visit that arena
|
||||
current->start = mi_arena_id_index(heap->arena_id);
|
||||
current->end = current->start + 1;
|
||||
current->os_list_count = 0;
|
||||
}
|
||||
else {
|
||||
// otherwise visit all starting at a random location
|
||||
if (abandoned_count > abandoned_list_count && max_arena > 0) {
|
||||
current->start = (heap == NULL || max_arena == 0 ? 0 : (mi_arena_id_t)(_mi_heap_random_next(heap) % max_arena));
|
||||
current->end = current->start + max_arena;
|
||||
}
|
||||
else {
|
||||
current->start = 0;
|
||||
current->end = 0;
|
||||
}
|
||||
current->os_list_count = abandoned_list_count; // max entries to visit in the os abandoned list
|
||||
}
|
||||
mi_assert_internal(current->start <= max_arena);
|
||||
}
|
||||
|
||||
void _mi_arena_field_cursor_done(mi_arena_field_cursor_t* current) {
|
||||
if (current->hold_visit_lock) {
|
||||
mi_lock_release(¤t->subproc->abandoned_os_visit_lock);
|
||||
current->hold_visit_lock = false;
|
||||
}
|
||||
}
|
||||
|
||||
static mi_segment_t* mi_arena_segment_clear_abandoned_at(mi_arena_t* arena, mi_subproc_t* subproc, mi_bitmap_index_t bitmap_idx) {
|
||||
// try to reclaim an abandoned segment in the arena atomically
|
||||
if (!_mi_bitmap_unclaim(arena->blocks_abandoned, arena->field_count, 1, bitmap_idx)) return NULL;
|
||||
mi_assert_internal(_mi_bitmap_is_claimed(arena->blocks_inuse, arena->field_count, 1, bitmap_idx));
|
||||
mi_segment_t* segment = (mi_segment_t*)mi_arena_block_start(arena, bitmap_idx);
|
||||
mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id) == 0);
|
||||
// check that the segment belongs to our sub-process
|
||||
// note: this is the reason we need the `abandoned_visit` lock in the case abandoned visiting is enabled.
|
||||
// without the lock an abandoned visit may otherwise fail to visit all abandoned segments in the sub-process.
|
||||
// for regular reclaim it is fine to miss one sometimes so without abandoned visiting we don't need the `abandoned_visit` lock.
|
||||
if (segment->subproc != subproc) {
|
||||
// it is from another sub-process, re-mark it and continue searching
|
||||
const bool was_zero = _mi_bitmap_claim(arena->blocks_abandoned, arena->field_count, 1, bitmap_idx, NULL);
|
||||
mi_assert_internal(was_zero); MI_UNUSED(was_zero);
|
||||
return NULL;
|
||||
}
|
||||
else {
|
||||
// success, we unabandoned a segment in our sub-process
|
||||
mi_atomic_decrement_relaxed(&subproc->abandoned_count);
|
||||
return segment;
|
||||
}
|
||||
}
|
||||
|
||||
static mi_segment_t* mi_arena_segment_clear_abandoned_next_field(mi_arena_field_cursor_t* previous) {
|
||||
const size_t max_arena = mi_arena_get_count();
|
||||
size_t field_idx = mi_bitmap_index_field(previous->bitmap_idx);
|
||||
size_t bit_idx = mi_bitmap_index_bit_in_field(previous->bitmap_idx);
|
||||
// visit arena's (from the previous cursor)
|
||||
for (; previous->start < previous->end; previous->start++, field_idx = 0, bit_idx = 0) {
|
||||
// index wraps around
|
||||
size_t arena_idx = (previous->start >= max_arena ? previous->start % max_arena : previous->start);
|
||||
mi_arena_t* arena = mi_arena_from_index(arena_idx);
|
||||
if (arena != NULL) {
|
||||
bool has_lock = false;
|
||||
// visit the abandoned fields (starting at previous_idx)
|
||||
for (; field_idx < arena->field_count; field_idx++, bit_idx = 0) {
|
||||
size_t field = mi_atomic_load_relaxed(&arena->blocks_abandoned[field_idx]);
|
||||
if mi_unlikely(field != 0) { // skip zero fields quickly
|
||||
// we only take the arena lock if there are actually abandoned segments present
|
||||
if (!has_lock && mi_option_is_enabled(mi_option_visit_abandoned)) {
|
||||
has_lock = (previous->visit_all ? mi_lock_acquire(&arena->abandoned_visit_lock) : mi_lock_try_acquire(&arena->abandoned_visit_lock));
|
||||
if (!has_lock) {
|
||||
if (previous->visit_all) {
|
||||
_mi_error_message(EFAULT, "internal error: failed to visit all abandoned segments due to failure to acquire the visitor lock");
|
||||
}
|
||||
// skip to next arena
|
||||
break;
|
||||
}
|
||||
}
|
||||
mi_assert_internal(has_lock || !mi_option_is_enabled(mi_option_visit_abandoned));
|
||||
// visit each set bit in the field (todo: maybe use `ctz` here?)
|
||||
for (; bit_idx < MI_BITMAP_FIELD_BITS; bit_idx++) {
|
||||
// pre-check if the bit is set
|
||||
size_t mask = ((size_t)1 << bit_idx);
|
||||
if mi_unlikely((field & mask) == mask) {
|
||||
mi_bitmap_index_t bitmap_idx = mi_bitmap_index_create(field_idx, bit_idx);
|
||||
mi_segment_t* const segment = mi_arena_segment_clear_abandoned_at(arena, previous->subproc, bitmap_idx);
|
||||
if (segment != NULL) {
|
||||
//mi_assert_internal(arena->blocks_committed == NULL || _mi_bitmap_is_claimed(arena->blocks_committed, arena->field_count, 1, bitmap_idx));
|
||||
if (has_lock) { mi_lock_release(&arena->abandoned_visit_lock); }
|
||||
previous->bitmap_idx = mi_bitmap_index_create_ex(field_idx, bit_idx + 1); // start at next one for the next iteration
|
||||
return segment;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (has_lock) { mi_lock_release(&arena->abandoned_visit_lock); }
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static mi_segment_t* mi_arena_segment_clear_abandoned_next_list(mi_arena_field_cursor_t* previous) {
|
||||
// go through the abandoned_os_list
|
||||
// we only allow one thread per sub-process to do to visit guarded by the `abandoned_os_visit_lock`.
|
||||
// The lock is released when the cursor is released.
|
||||
if (!previous->hold_visit_lock) {
|
||||
previous->hold_visit_lock = (previous->visit_all ? mi_lock_acquire(&previous->subproc->abandoned_os_visit_lock)
|
||||
: mi_lock_try_acquire(&previous->subproc->abandoned_os_visit_lock));
|
||||
if (!previous->hold_visit_lock) {
|
||||
if (previous->visit_all) {
|
||||
_mi_error_message(EFAULT, "internal error: failed to visit all abandoned segments due to failure to acquire the OS visitor lock");
|
||||
}
|
||||
return NULL; // we cannot get the lock, give up
|
||||
}
|
||||
}
|
||||
// One list entry at a time
|
||||
while (previous->os_list_count > 0) {
|
||||
previous->os_list_count--;
|
||||
const bool has_lock = mi_lock_acquire(&previous->subproc->abandoned_os_lock); // this could contend with concurrent OS block abandonment and reclaim from `free`
|
||||
if (has_lock) {
|
||||
mi_segment_t* segment = previous->subproc->abandoned_os_list;
|
||||
// pop from head of the list, a subsequent mark will push at the end (and thus we iterate through os_list_count entries)
|
||||
if (segment == NULL || mi_arena_segment_os_clear_abandoned(segment, false /* we already have the lock */)) {
|
||||
mi_lock_release(&previous->subproc->abandoned_os_lock);
|
||||
return segment;
|
||||
}
|
||||
// already abandoned, try again
|
||||
mi_lock_release(&previous->subproc->abandoned_os_lock);
|
||||
}
|
||||
else {
|
||||
_mi_error_message(EFAULT, "failed to acquire abandoned OS list lock during abandoned block visit\n");
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
// done
|
||||
mi_assert_internal(previous->os_list_count == 0);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
// reclaim abandoned segments
|
||||
// this does not set the thread id (so it appears as still abandoned)
|
||||
mi_segment_t* _mi_arena_segment_clear_abandoned_next(mi_arena_field_cursor_t* previous) {
|
||||
if (previous->start < previous->end) {
|
||||
// walk the arena
|
||||
mi_segment_t* segment = mi_arena_segment_clear_abandoned_next_field(previous);
|
||||
if (segment != NULL) { return segment; }
|
||||
}
|
||||
// no entries in the arena's anymore, walk the abandoned OS list
|
||||
mi_assert_internal(previous->start == previous->end);
|
||||
return mi_arena_segment_clear_abandoned_next_list(previous);
|
||||
}
|
||||
|
||||
|
||||
bool mi_abandoned_visit_blocks(mi_subproc_id_t subproc_id, int heap_tag, bool visit_blocks, mi_block_visit_fun* visitor, void* arg) {
|
||||
// (unfortunately) the visit_abandoned option must be enabled from the start.
|
||||
// This is to avoid taking locks if abandoned list visiting is not required (as for most programs)
|
||||
if (!mi_option_is_enabled(mi_option_visit_abandoned)) {
|
||||
_mi_error_message(EFAULT, "internal error: can only visit abandoned blocks when MIMALLOC_VISIT_ABANDONED=ON");
|
||||
return false;
|
||||
}
|
||||
mi_arena_field_cursor_t current;0
|
||||
_mi_arena_field_cursor_init(NULL, _mi_subproc_from_id(subproc_id), true /* visit all (blocking) */, ¤t);
|
||||
mi_segment_t* segment;
|
||||
bool ok = true;
|
||||
while (ok && (segment = _mi_arena_segment_clear_abandoned_next(¤t)) != NULL) {
|
||||
ok = _mi_segment_visit_blocks(segment, heap_tag, visit_blocks, visitor, arg);
|
||||
_mi_arena_segment_mark_abandoned(segment);
|
||||
}
|
||||
_mi_arena_field_cursor_done(¤t);
|
||||
return ok;
|
||||
}
|
988
src/arena-old.c
988
src/arena-old.c
|
@ -1,988 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2019-2024, Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
"Arenas" are fixed area's of OS memory from which we can allocate
|
||||
large blocks (>= MI_ARENA_MIN_BLOCK_SIZE, 4MiB).
|
||||
In contrast to the rest of mimalloc, the arenas are shared between
|
||||
threads and need to be accessed using atomic operations.
|
||||
|
||||
Arenas are also used to for huge OS page (1GiB) reservations or for reserving
|
||||
OS memory upfront which can be improve performance or is sometimes needed
|
||||
on embedded devices. We can also employ this with WASI or `sbrk` systems
|
||||
to reserve large arenas upfront and be able to reuse the memory more effectively.
|
||||
|
||||
The arena allocation needs to be thread safe and we use an atomic bitmap to allocate.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc/internal.h"
|
||||
#include "mimalloc/atomic.h"
|
||||
#include "bitmap.h"
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Arena allocation
|
||||
----------------------------------------------------------- */
|
||||
|
||||
// A memory arena descriptor
|
||||
typedef struct mi_arena_s {
|
||||
mi_arena_id_t id; // arena id; 0 for non-specific
|
||||
mi_memid_t memid; // memid of the memory area
|
||||
_Atomic(uint8_t*)start; // the start of the memory area
|
||||
size_t block_count; // size of the area in arena blocks (of `MI_ARENA_SLICE_SIZE`)
|
||||
size_t field_count; // number of bitmap fields (where `field_count * MI_BITMAP_FIELD_BITS >= block_count`)
|
||||
size_t meta_size; // size of the arena structure itself (including its bitmaps)
|
||||
mi_memid_t meta_memid; // memid of the arena structure itself (OS or static allocation)
|
||||
int numa_node; // associated NUMA node
|
||||
bool exclusive; // only allow allocations if specifically for this arena
|
||||
bool is_large; // memory area consists of large- or huge OS pages (always committed)
|
||||
mi_lock_t abandoned_visit_lock; // lock is only used when abandoned segments are being visited
|
||||
_Atomic(size_t)search_idx; // optimization to start the search for free blocks
|
||||
_Atomic(mi_msecs_t)purge_expire; // expiration time when blocks should be decommitted from `blocks_decommit`.
|
||||
mi_bitmap_field_t* blocks_dirty; // are the blocks potentially non-zero?
|
||||
mi_bitmap_field_t* blocks_committed; // are the blocks committed? (can be NULL for memory that cannot be decommitted)
|
||||
mi_bitmap_field_t* blocks_purge; // blocks that can be (reset) decommitted. (can be NULL for memory that cannot be (reset) decommitted)
|
||||
mi_bitmap_field_t* blocks_abandoned; // blocks that start with an abandoned segment. (This crosses API's but it is convenient to have here)
|
||||
mi_bitmap_field_t blocks_inuse[1]; // in-place bitmap of in-use blocks (of size `field_count`)
|
||||
// do not add further fields here as the dirty, committed, purged, and abandoned bitmaps follow the inuse bitmap fields.
|
||||
} mi_arena_t;
|
||||
|
||||
|
||||
#define MI_ARENA_SLICE_SIZE (MI_SEGMENT_SIZE) // 64MiB (must be at least MI_SEGMENT_ALIGN)
|
||||
#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_SLICE_SIZE/2) // 32MiB
|
||||
#define MI_MAX_ARENAS (132) // Limited as the reservation exponentially increases (and takes up .bss)
|
||||
|
||||
// The available arenas
|
||||
static mi_decl_cache_align _Atomic(mi_arena_t*) mi_arenas[MI_MAX_ARENAS];
|
||||
static mi_decl_cache_align _Atomic(size_t) mi_arena_count; // = 0
|
||||
|
||||
#define MI_IN_ARENA_C
|
||||
#include "arena-abandon.c"
|
||||
#undef MI_IN_ARENA_C
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Arena id's
|
||||
id = arena_index + 1
|
||||
----------------------------------------------------------- */
|
||||
|
||||
size_t mi_arena_id_index(mi_arena_id_t id) {
|
||||
return (size_t)(id <= 0 ? MI_MAX_ARENAS : id - 1);
|
||||
}
|
||||
|
||||
static mi_arena_id_t mi_arena_id_create(size_t arena_index) {
|
||||
mi_assert_internal(arena_index < MI_MAX_ARENAS);
|
||||
return (int)arena_index + 1;
|
||||
}
|
||||
|
||||
mi_arena_id_t _mi_arena_id_none(void) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool mi_arena_id_is_suitable(mi_arena_id_t arena_id, bool arena_is_exclusive, mi_arena_id_t req_arena_id) {
|
||||
return ((!arena_is_exclusive && req_arena_id == _mi_arena_id_none()) ||
|
||||
(arena_id == req_arena_id));
|
||||
}
|
||||
|
||||
bool _mi_arena_memid_is_suitable(mi_memid_t memid, mi_arena_id_t request_arena_id) {
|
||||
if (memid.memkind == MI_MEM_ARENA) {
|
||||
return mi_arena_id_is_suitable(memid.mem.arena.id, memid.mem.arena.is_exclusive, request_arena_id);
|
||||
}
|
||||
else {
|
||||
return mi_arena_id_is_suitable(_mi_arena_id_none(), false, request_arena_id);
|
||||
}
|
||||
}
|
||||
|
||||
size_t mi_arena_get_count(void) {
|
||||
return mi_atomic_load_relaxed(&mi_arena_count);
|
||||
}
|
||||
|
||||
mi_arena_t* mi_arena_from_index(size_t idx) {
|
||||
mi_assert_internal(idx < mi_arena_get_count());
|
||||
return mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[idx]);
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Arena allocations get a (currently) 16-bit memory id where the
|
||||
lower 8 bits are the arena id, and the upper bits the block index.
|
||||
----------------------------------------------------------- */
|
||||
|
||||
static size_t mi_block_count_of_size(size_t size) {
|
||||
return _mi_divide_up(size, MI_ARENA_SLICE_SIZE);
|
||||
}
|
||||
|
||||
static size_t mi_arena_block_size(size_t bcount) {
|
||||
return (bcount * MI_ARENA_SLICE_SIZE);
|
||||
}
|
||||
|
||||
static size_t mi_arena_size(mi_arena_t* arena) {
|
||||
return mi_arena_block_size(arena->block_count);
|
||||
}
|
||||
|
||||
static mi_memid_t mi_memid_create_arena(mi_arena_id_t id, bool is_exclusive, mi_bitmap_index_t bitmap_index) {
|
||||
mi_memid_t memid = _mi_memid_create(MI_MEM_ARENA);
|
||||
memid.mem.arena.id = id;
|
||||
memid.mem.arena.block_index = bitmap_index;
|
||||
memid.mem.arena.is_exclusive = is_exclusive;
|
||||
return memid;
|
||||
}
|
||||
|
||||
bool mi_arena_memid_indices(mi_memid_t memid, size_t* arena_index, mi_bitmap_index_t* bitmap_index) {
|
||||
mi_assert_internal(memid.memkind == MI_MEM_ARENA);
|
||||
*arena_index = mi_arena_id_index(memid.mem.arena.id);
|
||||
*bitmap_index = memid.mem.arena.block_index;
|
||||
return memid.mem.arena.is_exclusive;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Special static area for mimalloc internal structures
|
||||
to avoid OS calls (for example, for the arena metadata (~= 256b))
|
||||
----------------------------------------------------------- */
|
||||
|
||||
#define MI_ARENA_STATIC_MAX ((MI_INTPTR_SIZE/2)*MI_KiB) // 4 KiB on 64-bit
|
||||
|
||||
static mi_decl_cache_align uint8_t mi_arena_static[MI_ARENA_STATIC_MAX]; // must be cache aligned, see issue #895
|
||||
static mi_decl_cache_align _Atomic(size_t) mi_arena_static_top;
|
||||
|
||||
static void* mi_arena_static_zalloc(size_t size, size_t alignment, mi_memid_t* memid) {
|
||||
*memid = _mi_memid_none();
|
||||
if (size == 0 || size > MI_ARENA_STATIC_MAX) return NULL;
|
||||
const size_t toplow = mi_atomic_load_relaxed(&mi_arena_static_top);
|
||||
if ((toplow + size) > MI_ARENA_STATIC_MAX) return NULL;
|
||||
|
||||
// try to claim space
|
||||
if (alignment < MI_MAX_ALIGN_SIZE) { alignment = MI_MAX_ALIGN_SIZE; }
|
||||
const size_t oversize = size + alignment - 1;
|
||||
if (toplow + oversize > MI_ARENA_STATIC_MAX) return NULL;
|
||||
const size_t oldtop = mi_atomic_add_acq_rel(&mi_arena_static_top, oversize);
|
||||
size_t top = oldtop + oversize;
|
||||
if (top > MI_ARENA_STATIC_MAX) {
|
||||
// try to roll back, ok if this fails
|
||||
mi_atomic_cas_strong_acq_rel(&mi_arena_static_top, &top, oldtop);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// success
|
||||
*memid = _mi_memid_create(MI_MEM_STATIC);
|
||||
memid->initially_zero = true;
|
||||
const size_t start = _mi_align_up(oldtop, alignment);
|
||||
uint8_t* const p = &mi_arena_static[start];
|
||||
_mi_memzero_aligned(p, size);
|
||||
return p;
|
||||
}
|
||||
|
||||
void* _mi_arena_meta_zalloc(size_t size, mi_memid_t* memid) {
|
||||
*memid = _mi_memid_none();
|
||||
|
||||
// try static
|
||||
void* p = mi_arena_static_zalloc(size, MI_MAX_ALIGN_SIZE, memid);
|
||||
if (p != NULL) return p;
|
||||
|
||||
// or fall back to the OS
|
||||
p = _mi_os_alloc(size, memid, &_mi_stats_main);
|
||||
if (p == NULL) return NULL;
|
||||
|
||||
// zero the OS memory if needed
|
||||
if (!memid->initially_zero) {
|
||||
_mi_memzero_aligned(p, size);
|
||||
memid->initially_zero = true;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
void _mi_arena_meta_free(void* p, mi_memid_t memid, size_t size) {
|
||||
if (mi_memkind_is_os(memid.memkind)) {
|
||||
_mi_os_free(p, size, memid, &_mi_stats_main);
|
||||
}
|
||||
else {
|
||||
mi_assert(memid.memkind == MI_MEM_STATIC);
|
||||
}
|
||||
}
|
||||
|
||||
void* mi_arena_block_start(mi_arena_t* arena, mi_bitmap_index_t bindex) {
|
||||
return (arena->start + mi_arena_block_size(mi_bitmap_index_bit(bindex)));
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Thread safe allocation in an arena
|
||||
----------------------------------------------------------- */
|
||||
|
||||
// claim the `blocks_inuse` bits
|
||||
static bool mi_arena_try_claim(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats)
|
||||
{
|
||||
size_t idx = 0; // mi_atomic_load_relaxed(&arena->search_idx); // start from last search; ok to be relaxed as the exact start does not matter
|
||||
if (_mi_bitmap_try_find_from_claim_across(arena->blocks_inuse, arena->field_count, idx, blocks, bitmap_idx, stats)) {
|
||||
mi_atomic_store_relaxed(&arena->search_idx, mi_bitmap_index_field(*bitmap_idx)); // start search from found location next time around
|
||||
return true;
|
||||
};
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Arena Allocation
|
||||
----------------------------------------------------------- */
|
||||
|
||||
static mi_decl_noinline void* mi_arena_try_alloc_at(mi_arena_t* arena, size_t arena_index, size_t needed_bcount,
|
||||
bool commit, mi_memid_t* memid, mi_os_tld_t* tld)
|
||||
{
|
||||
MI_UNUSED(arena_index);
|
||||
mi_assert_internal(mi_arena_id_index(arena->id) == arena_index);
|
||||
|
||||
mi_bitmap_index_t bitmap_index;
|
||||
if (!mi_arena_try_claim(arena, needed_bcount, &bitmap_index, tld->stats)) return NULL;
|
||||
|
||||
// claimed it!
|
||||
void* p = mi_arena_block_start(arena, bitmap_index);
|
||||
*memid = mi_memid_create_arena(arena->id, arena->exclusive, bitmap_index);
|
||||
memid->is_pinned = arena->memid.is_pinned;
|
||||
|
||||
// none of the claimed blocks should be scheduled for a decommit
|
||||
if (arena->blocks_purge != NULL) {
|
||||
// this is thread safe as a potential purge only decommits parts that are not yet claimed as used (in `blocks_inuse`).
|
||||
_mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, needed_bcount, bitmap_index);
|
||||
}
|
||||
|
||||
// set the dirty bits (todo: no need for an atomic op here?)
|
||||
if (arena->memid.initially_zero && arena->blocks_dirty != NULL) {
|
||||
memid->initially_zero = _mi_bitmap_claim_across(arena->blocks_dirty, arena->field_count, needed_bcount, bitmap_index, NULL);
|
||||
}
|
||||
|
||||
// set commit state
|
||||
if (arena->blocks_committed == NULL) {
|
||||
// always committed
|
||||
memid->initially_committed = true;
|
||||
}
|
||||
else if (commit) {
|
||||
// commit requested, but the range may not be committed as a whole: ensure it is committed now
|
||||
memid->initially_committed = true;
|
||||
bool any_uncommitted;
|
||||
_mi_bitmap_claim_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index, &any_uncommitted);
|
||||
if (any_uncommitted) {
|
||||
bool commit_zero = false;
|
||||
if (!_mi_os_commit(p, mi_arena_block_size(needed_bcount), &commit_zero, tld->stats)) {
|
||||
memid->initially_committed = false;
|
||||
}
|
||||
else {
|
||||
if (commit_zero) { memid->initially_zero = true; }
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
// no need to commit, but check if already fully committed
|
||||
memid->initially_committed = _mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, needed_bcount, bitmap_index);
|
||||
}
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
// allocate in a speficic arena
|
||||
static void* mi_arena_try_alloc_at_id(mi_arena_id_t arena_id, bool match_numa_node, int numa_node, size_t size, size_t alignment,
|
||||
bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld )
|
||||
{
|
||||
MI_UNUSED_RELEASE(alignment);
|
||||
mi_assert(alignment <= MI_SEGMENT_ALIGN);
|
||||
const size_t bcount = mi_block_count_of_size(size);
|
||||
const size_t arena_index = mi_arena_id_index(arena_id);
|
||||
mi_assert_internal(arena_index < mi_atomic_load_relaxed(&mi_arena_count));
|
||||
mi_assert_internal(size <= mi_arena_block_size(bcount));
|
||||
|
||||
// Check arena suitability
|
||||
mi_arena_t* arena = mi_arena_from_index(arena_index);
|
||||
if (arena == NULL) return NULL;
|
||||
if (!allow_large && arena->is_large) return NULL;
|
||||
if (!mi_arena_id_is_suitable(arena->id, arena->exclusive, req_arena_id)) return NULL;
|
||||
if (req_arena_id == _mi_arena_id_none()) { // in not specific, check numa affinity
|
||||
const bool numa_suitable = (numa_node < 0 || arena->numa_node < 0 || arena->numa_node == numa_node);
|
||||
if (match_numa_node) { if (!numa_suitable) return NULL; }
|
||||
else { if (numa_suitable) return NULL; }
|
||||
}
|
||||
|
||||
// try to allocate
|
||||
void* p = mi_arena_try_alloc_at(arena, arena_index, bcount, commit, memid, tld);
|
||||
mi_assert_internal(p == NULL || _mi_is_aligned(p, alignment));
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
// allocate from an arena with fallback to the OS
|
||||
static mi_decl_noinline void* mi_arena_try_alloc(int numa_node, size_t size, size_t alignment,
|
||||
bool commit, bool allow_large,
|
||||
mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld )
|
||||
{
|
||||
MI_UNUSED(alignment);
|
||||
mi_assert_internal(alignment <= MI_SEGMENT_ALIGN);
|
||||
const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
|
||||
if mi_likely(max_arena == 0) return NULL;
|
||||
|
||||
if (req_arena_id != _mi_arena_id_none()) {
|
||||
// try a specific arena if requested
|
||||
if (mi_arena_id_index(req_arena_id) < max_arena) {
|
||||
void* p = mi_arena_try_alloc_at_id(req_arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
|
||||
if (p != NULL) return p;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// try numa affine allocation
|
||||
for (size_t i = 0; i < max_arena; i++) {
|
||||
void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
|
||||
if (p != NULL) return p;
|
||||
}
|
||||
|
||||
// try from another numa node instead..
|
||||
if (numa_node >= 0) { // if numa_node was < 0 (no specific affinity requested), all arena's have been tried already
|
||||
for (size_t i = 0; i < max_arena; i++) {
|
||||
void* p = mi_arena_try_alloc_at_id(mi_arena_id_create(i), false /* only proceed if not numa local */, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
|
||||
if (p != NULL) return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// try to reserve a fresh arena space
|
||||
static bool mi_arena_reserve(size_t req_size, bool allow_large, mi_arena_id_t req_arena_id, mi_arena_id_t *arena_id)
|
||||
{
|
||||
if (_mi_preloading()) return false; // use OS only while pre loading
|
||||
if (req_arena_id != _mi_arena_id_none()) return false;
|
||||
|
||||
const size_t arena_count = mi_atomic_load_acquire(&mi_arena_count);
|
||||
if (arena_count > (MI_MAX_ARENAS - 4)) return false;
|
||||
|
||||
size_t arena_reserve = mi_option_get_size(mi_option_arena_reserve);
|
||||
if (arena_reserve == 0) return false;
|
||||
|
||||
if (!_mi_os_has_virtual_reserve()) {
|
||||
arena_reserve = arena_reserve/4; // be conservative if virtual reserve is not supported (for WASM for example)
|
||||
}
|
||||
arena_reserve = _mi_align_up(arena_reserve, MI_ARENA_SLICE_SIZE);
|
||||
arena_reserve = _mi_align_up(arena_reserve, MI_SEGMENT_SIZE);
|
||||
if (arena_count >= 8 && arena_count <= 128) {
|
||||
// scale up the arena sizes exponentially every 8 entries (128 entries get to 589TiB)
|
||||
const size_t multiplier = (size_t)1 << _mi_clamp(arena_count/8, 0, 16 );
|
||||
size_t reserve = 0;
|
||||
if (!mi_mul_overflow(multiplier, arena_reserve, &reserve)) {
|
||||
arena_reserve = reserve;
|
||||
}
|
||||
}
|
||||
if (arena_reserve < req_size) return false; // should be able to at least handle the current allocation size
|
||||
|
||||
// commit eagerly?
|
||||
bool arena_commit = false;
|
||||
if (mi_option_get(mi_option_arena_eager_commit) == 2) { arena_commit = _mi_os_has_overcommit(); }
|
||||
else if (mi_option_get(mi_option_arena_eager_commit) == 1) { arena_commit = true; }
|
||||
|
||||
return (mi_reserve_os_memory_ex(arena_reserve, arena_commit, allow_large, false /* exclusive? */, arena_id) == 0);
|
||||
}
|
||||
|
||||
|
||||
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool commit, bool allow_large,
|
||||
mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld)
|
||||
{
|
||||
mi_assert_internal(memid != NULL && tld != NULL);
|
||||
mi_assert_internal(size > 0);
|
||||
*memid = _mi_memid_none();
|
||||
|
||||
const int numa_node = _mi_os_numa_node(tld); // current numa node
|
||||
|
||||
// try to allocate in an arena if the alignment is small enough and the object is not too small (as for heap meta data)
|
||||
if (!mi_option_is_enabled(mi_option_disallow_arena_alloc) || req_arena_id != _mi_arena_id_none()) { // is arena allocation allowed?
|
||||
if (size >= MI_ARENA_MIN_OBJ_SIZE && alignment <= MI_SEGMENT_ALIGN && align_offset == 0) {
|
||||
void* p = mi_arena_try_alloc(numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
|
||||
if (p != NULL) return p;
|
||||
|
||||
// otherwise, try to first eagerly reserve a new arena
|
||||
if (req_arena_id == _mi_arena_id_none()) {
|
||||
mi_arena_id_t arena_id = 0;
|
||||
if (mi_arena_reserve(size, allow_large, req_arena_id, &arena_id)) {
|
||||
// and try allocate in there
|
||||
mi_assert_internal(req_arena_id == _mi_arena_id_none());
|
||||
p = mi_arena_try_alloc_at_id(arena_id, true, numa_node, size, alignment, commit, allow_large, req_arena_id, memid, tld);
|
||||
if (p != NULL) return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// if we cannot use OS allocation, return NULL
|
||||
if (mi_option_is_enabled(mi_option_disallow_os_alloc) || req_arena_id != _mi_arena_id_none()) {
|
||||
errno = ENOMEM;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// finally, fall back to the OS
|
||||
if (align_offset > 0) {
|
||||
return _mi_os_alloc_aligned_at_offset(size, alignment, align_offset, commit, allow_large, memid, tld->stats);
|
||||
}
|
||||
else {
|
||||
return _mi_os_alloc_aligned(size, alignment, commit, allow_large, memid, tld->stats);
|
||||
}
|
||||
}
|
||||
|
||||
void* _mi_arena_alloc(size_t size, bool commit, bool allow_large, mi_arena_id_t req_arena_id, mi_memid_t* memid, mi_os_tld_t* tld)
|
||||
{
|
||||
return _mi_arena_alloc_aligned(size, MI_ARENA_SLICE_SIZE, 0, commit, allow_large, req_arena_id, memid, tld);
|
||||
}
|
||||
|
||||
|
||||
void* mi_arena_area(mi_arena_id_t arena_id, size_t* size) {
|
||||
if (size != NULL) *size = 0;
|
||||
size_t arena_index = mi_arena_id_index(arena_id);
|
||||
if (arena_index >= MI_MAX_ARENAS) return NULL;
|
||||
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[arena_index]);
|
||||
if (arena == NULL) return NULL;
|
||||
if (size != NULL) { *size = mi_arena_block_size(arena->block_count); }
|
||||
return arena->start;
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Arena purge
|
||||
----------------------------------------------------------- */
|
||||
|
||||
static long mi_arena_purge_delay(void) {
|
||||
// <0 = no purging allowed, 0=immediate purging, >0=milli-second delay
|
||||
return (mi_option_get(mi_option_purge_delay) * mi_option_get(mi_option_arena_purge_mult));
|
||||
}
|
||||
|
||||
// reset or decommit in an arena and update the committed/decommit bitmaps
|
||||
// assumes we own the area (i.e. blocks_in_use is claimed by us)
|
||||
static void mi_arena_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) {
|
||||
mi_assert_internal(arena->blocks_committed != NULL);
|
||||
mi_assert_internal(arena->blocks_purge != NULL);
|
||||
mi_assert_internal(!arena->memid.is_pinned);
|
||||
const size_t size = mi_arena_block_size(blocks);
|
||||
void* const p = mi_arena_block_start(arena, bitmap_idx);
|
||||
bool needs_recommit;
|
||||
if (_mi_bitmap_is_claimed_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx)) {
|
||||
// all blocks are committed, we can purge freely
|
||||
needs_recommit = _mi_os_purge(p, size, stats);
|
||||
}
|
||||
else {
|
||||
// some blocks are not committed -- this can happen when a partially committed block is freed
|
||||
// in `_mi_arena_free` and it is conservatively marked as uncommitted but still scheduled for a purge
|
||||
// we need to ensure we do not try to reset (as that may be invalid for uncommitted memory),
|
||||
// and also undo the decommit stats (as it was already adjusted)
|
||||
mi_assert_internal(mi_option_is_enabled(mi_option_purge_decommits));
|
||||
needs_recommit = _mi_os_purge_ex(p, size, false /* allow reset? */, stats);
|
||||
if (needs_recommit) { _mi_stat_increase(&_mi_stats_main.committed, size); }
|
||||
}
|
||||
|
||||
// clear the purged blocks
|
||||
_mi_bitmap_unclaim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx);
|
||||
// update committed bitmap
|
||||
if (needs_recommit) {
|
||||
_mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx);
|
||||
}
|
||||
}
|
||||
|
||||
// Schedule a purge. This is usually delayed to avoid repeated decommit/commit calls.
|
||||
// Note: assumes we (still) own the area as we may purge immediately
|
||||
static void mi_arena_schedule_purge(mi_arena_t* arena, size_t bitmap_idx, size_t blocks, mi_stats_t* stats) {
|
||||
mi_assert_internal(arena->blocks_purge != NULL);
|
||||
const long delay = mi_arena_purge_delay();
|
||||
if (delay < 0) return; // is purging allowed at all?
|
||||
|
||||
if (_mi_preloading() || delay == 0) {
|
||||
// decommit directly
|
||||
mi_arena_purge(arena, bitmap_idx, blocks, stats);
|
||||
}
|
||||
else {
|
||||
// schedule decommit
|
||||
mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire);
|
||||
if (expire != 0) {
|
||||
mi_atomic_addi64_acq_rel(&arena->purge_expire, (mi_msecs_t)(delay/10)); // add smallish extra delay
|
||||
}
|
||||
else {
|
||||
mi_atomic_storei64_release(&arena->purge_expire, _mi_clock_now() + delay);
|
||||
}
|
||||
_mi_bitmap_claim_across(arena->blocks_purge, arena->field_count, blocks, bitmap_idx, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
// purge a range of blocks
|
||||
// return true if the full range was purged.
|
||||
// assumes we own the area (i.e. blocks_in_use is claimed by us)
|
||||
static bool mi_arena_purge_range(mi_arena_t* arena, size_t idx, size_t startidx, size_t bitlen, size_t purge, mi_stats_t* stats) {
|
||||
const size_t endidx = startidx + bitlen;
|
||||
size_t bitidx = startidx;
|
||||
bool all_purged = false;
|
||||
while (bitidx < endidx) {
|
||||
// count consecutive ones in the purge mask
|
||||
size_t count = 0;
|
||||
while (bitidx + count < endidx && (purge & ((size_t)1 << (bitidx + count))) != 0) {
|
||||
count++;
|
||||
}
|
||||
if (count > 0) {
|
||||
// found range to be purged
|
||||
const mi_bitmap_index_t range_idx = mi_bitmap_index_create(idx, bitidx);
|
||||
mi_arena_purge(arena, range_idx, count, stats);
|
||||
if (count == bitlen) {
|
||||
all_purged = true;
|
||||
}
|
||||
}
|
||||
bitidx += (count+1); // +1 to skip the zero bit (or end)
|
||||
}
|
||||
return all_purged;
|
||||
}
|
||||
|
||||
// returns true if anything was purged
|
||||
static bool mi_arena_try_purge(mi_arena_t* arena, mi_msecs_t now, bool force, mi_stats_t* stats)
|
||||
{
|
||||
if (arena->memid.is_pinned || arena->blocks_purge == NULL) return false;
|
||||
mi_msecs_t expire = mi_atomic_loadi64_relaxed(&arena->purge_expire);
|
||||
if (expire == 0) return false;
|
||||
if (!force && expire > now) return false;
|
||||
|
||||
// reset expire (if not already set concurrently)
|
||||
mi_atomic_casi64_strong_acq_rel(&arena->purge_expire, &expire, (mi_msecs_t)0);
|
||||
|
||||
// potential purges scheduled, walk through the bitmap
|
||||
bool any_purged = false;
|
||||
bool full_purge = true;
|
||||
for (size_t i = 0; i < arena->field_count; i++) {
|
||||
size_t purge = mi_atomic_load_relaxed(&arena->blocks_purge[i]);
|
||||
if (purge != 0) {
|
||||
size_t bitidx = 0;
|
||||
while (bitidx < MI_BITMAP_FIELD_BITS) {
|
||||
// find consecutive range of ones in the purge mask
|
||||
size_t bitlen = 0;
|
||||
while (bitidx + bitlen < MI_BITMAP_FIELD_BITS && (purge & ((size_t)1 << (bitidx + bitlen))) != 0) {
|
||||
bitlen++;
|
||||
}
|
||||
// temporarily claim the purge range as "in-use" to be thread-safe with allocation
|
||||
// try to claim the longest range of corresponding in_use bits
|
||||
const mi_bitmap_index_t bitmap_index = mi_bitmap_index_create(i, bitidx);
|
||||
while( bitlen > 0 ) {
|
||||
if (_mi_bitmap_try_claim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index)) {
|
||||
break;
|
||||
}
|
||||
bitlen--;
|
||||
}
|
||||
// actual claimed bits at `in_use`
|
||||
if (bitlen > 0) {
|
||||
// read purge again now that we have the in_use bits
|
||||
purge = mi_atomic_load_acquire(&arena->blocks_purge[i]);
|
||||
if (!mi_arena_purge_range(arena, i, bitidx, bitlen, purge, stats)) {
|
||||
full_purge = false;
|
||||
}
|
||||
any_purged = true;
|
||||
// release the claimed `in_use` bits again
|
||||
_mi_bitmap_unclaim(arena->blocks_inuse, arena->field_count, bitlen, bitmap_index);
|
||||
}
|
||||
bitidx += (bitlen+1); // +1 to skip the zero (or end)
|
||||
} // while bitidx
|
||||
} // purge != 0
|
||||
}
|
||||
// if not fully purged, make sure to purge again in the future
|
||||
if (!full_purge) {
|
||||
const long delay = mi_arena_purge_delay();
|
||||
mi_msecs_t expected = 0;
|
||||
mi_atomic_casi64_strong_acq_rel(&arena->purge_expire,&expected,_mi_clock_now() + delay);
|
||||
}
|
||||
return any_purged;
|
||||
}
|
||||
|
||||
static void mi_arenas_try_purge( bool force, bool visit_all, mi_stats_t* stats ) {
|
||||
if (_mi_preloading() || mi_arena_purge_delay() <= 0) return; // nothing will be scheduled
|
||||
|
||||
const size_t max_arena = mi_atomic_load_acquire(&mi_arena_count);
|
||||
if (max_arena == 0) return;
|
||||
|
||||
// allow only one thread to purge at a time
|
||||
static mi_atomic_guard_t purge_guard;
|
||||
mi_atomic_guard(&purge_guard)
|
||||
{
|
||||
mi_msecs_t now = _mi_clock_now();
|
||||
size_t max_purge_count = (visit_all ? max_arena : 1);
|
||||
for (size_t i = 0; i < max_arena; i++) {
|
||||
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
|
||||
if (arena != NULL) {
|
||||
if (mi_arena_try_purge(arena, now, force, stats)) {
|
||||
if (max_purge_count <= 1) break;
|
||||
max_purge_count--;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Arena free
|
||||
----------------------------------------------------------- */
|
||||
|
||||
void _mi_arena_free(void* p, size_t size, size_t committed_size, mi_memid_t memid, mi_stats_t* stats) {
|
||||
mi_assert_internal(size > 0 && stats != NULL);
|
||||
mi_assert_internal(committed_size <= size);
|
||||
if (p==NULL) return;
|
||||
if (size==0) return;
|
||||
const bool all_committed = (committed_size == size);
|
||||
|
||||
// need to set all memory to undefined as some parts may still be marked as no_access (like padding etc.)
|
||||
mi_track_mem_undefined(p,size);
|
||||
|
||||
if (mi_memkind_is_os(memid.memkind)) {
|
||||
// was a direct OS allocation, pass through
|
||||
if (!all_committed && committed_size > 0) {
|
||||
// if partially committed, adjust the committed stats (as `_mi_os_free` will increase decommit by the full size)
|
||||
_mi_stat_decrease(&_mi_stats_main.committed, committed_size);
|
||||
}
|
||||
_mi_os_free(p, size, memid, stats);
|
||||
}
|
||||
else if (memid.memkind == MI_MEM_ARENA) {
|
||||
// allocated in an arena
|
||||
size_t arena_idx;
|
||||
size_t bitmap_idx;
|
||||
mi_arena_memid_indices(memid, &arena_idx, &bitmap_idx);
|
||||
mi_assert_internal(arena_idx < MI_MAX_ARENAS);
|
||||
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t,&mi_arenas[arena_idx]);
|
||||
mi_assert_internal(arena != NULL);
|
||||
const size_t blocks = mi_block_count_of_size(size);
|
||||
|
||||
// checks
|
||||
if (arena == NULL) {
|
||||
_mi_error_message(EINVAL, "trying to free from an invalid arena: %p, size %zu, memid: 0x%zx\n", p, size, memid);
|
||||
return;
|
||||
}
|
||||
mi_assert_internal(arena->field_count > mi_bitmap_index_field(bitmap_idx));
|
||||
if (arena->field_count <= mi_bitmap_index_field(bitmap_idx)) {
|
||||
_mi_error_message(EINVAL, "trying to free from an invalid arena block: %p, size %zu, memid: 0x%zx\n", p, size, memid);
|
||||
return;
|
||||
}
|
||||
|
||||
// potentially decommit
|
||||
if (arena->memid.is_pinned || arena->blocks_committed == NULL) {
|
||||
mi_assert_internal(all_committed);
|
||||
}
|
||||
else {
|
||||
mi_assert_internal(arena->blocks_committed != NULL);
|
||||
mi_assert_internal(arena->blocks_purge != NULL);
|
||||
|
||||
if (!all_committed) {
|
||||
// mark the entire range as no longer committed (so we recommit the full range when re-using)
|
||||
_mi_bitmap_unclaim_across(arena->blocks_committed, arena->field_count, blocks, bitmap_idx);
|
||||
mi_track_mem_noaccess(p,size);
|
||||
if (committed_size > 0) {
|
||||
// if partially committed, adjust the committed stats (is it will be recommitted when re-using)
|
||||
// in the delayed purge, we now need to not count a decommit if the range is not marked as committed.
|
||||
_mi_stat_decrease(&_mi_stats_main.committed, committed_size);
|
||||
}
|
||||
// note: if not all committed, it may be that the purge will reset/decommit the entire range
|
||||
// that contains already decommitted parts. Since purge consistently uses reset or decommit that
|
||||
// works (as we should never reset decommitted parts).
|
||||
}
|
||||
// (delay) purge the entire range
|
||||
mi_arena_schedule_purge(arena, bitmap_idx, blocks, stats);
|
||||
}
|
||||
|
||||
// and make it available to others again
|
||||
bool all_inuse = _mi_bitmap_unclaim_across(arena->blocks_inuse, arena->field_count, blocks, bitmap_idx);
|
||||
if (!all_inuse) {
|
||||
_mi_error_message(EAGAIN, "trying to free an already freed arena block: %p, size %zu\n", p, size);
|
||||
return;
|
||||
};
|
||||
}
|
||||
else {
|
||||
// arena was none, external, or static; nothing to do
|
||||
mi_assert_internal(memid.memkind < MI_MEM_OS);
|
||||
}
|
||||
|
||||
// purge expired decommits
|
||||
mi_arenas_try_purge(false, false, stats);
|
||||
}
|
||||
|
||||
// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit`
|
||||
// for dynamic libraries that are unloaded and need to release all their allocated memory.
|
||||
static void mi_arenas_unsafe_destroy(void) {
|
||||
const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
|
||||
size_t new_max_arena = 0;
|
||||
for (size_t i = 0; i < max_arena; i++) {
|
||||
mi_arena_t* arena = mi_atomic_load_ptr_acquire(mi_arena_t, &mi_arenas[i]);
|
||||
if (arena != NULL) {
|
||||
mi_lock_done(&arena->abandoned_visit_lock);
|
||||
if (arena->start != NULL && mi_memkind_is_os(arena->memid.memkind)) {
|
||||
mi_atomic_store_ptr_release(mi_arena_t, &mi_arenas[i], NULL);
|
||||
_mi_os_free(arena->start, mi_arena_size(arena), arena->memid, &_mi_stats_main);
|
||||
}
|
||||
else {
|
||||
new_max_arena = i;
|
||||
}
|
||||
_mi_arena_meta_free(arena, arena->meta_memid, arena->meta_size);
|
||||
}
|
||||
}
|
||||
|
||||
// try to lower the max arena.
|
||||
size_t expected = max_arena;
|
||||
mi_atomic_cas_strong_acq_rel(&mi_arena_count, &expected, new_max_arena);
|
||||
}
|
||||
|
||||
// Purge the arenas; if `force_purge` is true, amenable parts are purged even if not yet expired
|
||||
void _mi_arenas_collect(bool force_purge, mi_stats_t* stats) {
|
||||
mi_arenas_try_purge(force_purge, force_purge /* visit all? */, stats);
|
||||
}
|
||||
|
||||
// destroy owned arenas; this is unsafe and should only be done using `mi_option_destroy_on_exit`
|
||||
// for dynamic libraries that are unloaded and need to release all their allocated memory.
|
||||
void _mi_arena_unsafe_destroy_all(mi_stats_t* stats) {
|
||||
mi_arenas_unsafe_destroy();
|
||||
_mi_arenas_collect(true /* force purge */, stats); // purge non-owned arenas
|
||||
}
|
||||
|
||||
// Is a pointer inside any of our arenas?
|
||||
bool _mi_arena_contains(const void* p) {
|
||||
const size_t max_arena = mi_atomic_load_relaxed(&mi_arena_count);
|
||||
for (size_t i = 0; i < max_arena; i++) {
|
||||
mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]);
|
||||
if (arena != NULL && arena->start <= (const uint8_t*)p && arena->start + mi_arena_block_size(arena->block_count) > (const uint8_t*)p) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Add an arena.
|
||||
----------------------------------------------------------- */
|
||||
|
||||
static bool mi_arena_add(mi_arena_t* arena, mi_arena_id_t* arena_id, mi_stats_t* stats) {
|
||||
mi_assert_internal(arena != NULL);
|
||||
mi_assert_internal((uintptr_t)mi_atomic_load_ptr_relaxed(uint8_t,&arena->start) % MI_SEGMENT_ALIGN == 0);
|
||||
mi_assert_internal(arena->block_count > 0);
|
||||
if (arena_id != NULL) { *arena_id = -1; }
|
||||
|
||||
size_t i = mi_atomic_increment_acq_rel(&mi_arena_count);
|
||||
if (i >= MI_MAX_ARENAS) {
|
||||
mi_atomic_decrement_acq_rel(&mi_arena_count);
|
||||
return false;
|
||||
}
|
||||
_mi_stat_counter_increase(&stats->arena_count,1);
|
||||
arena->id = mi_arena_id_create(i);
|
||||
mi_atomic_store_ptr_release(mi_arena_t,&mi_arenas[i], arena);
|
||||
if (arena_id != NULL) { *arena_id = arena->id; }
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool mi_manage_os_memory_ex2(void* start, size_t size, bool is_large, int numa_node, bool exclusive, mi_memid_t memid, mi_arena_id_t* arena_id) mi_attr_noexcept
|
||||
{
|
||||
if (arena_id != NULL) *arena_id = _mi_arena_id_none();
|
||||
if (size < MI_ARENA_SLICE_SIZE) return false;
|
||||
|
||||
if (is_large) {
|
||||
mi_assert_internal(memid.initially_committed && memid.is_pinned);
|
||||
}
|
||||
|
||||
const size_t bcount = size / MI_ARENA_SLICE_SIZE;
|
||||
const size_t fields = _mi_divide_up(bcount, MI_BITMAP_FIELD_BITS);
|
||||
const size_t bitmaps = (memid.is_pinned ? 3 : 5);
|
||||
const size_t asize = sizeof(mi_arena_t) + (bitmaps*fields*sizeof(mi_bitmap_field_t));
|
||||
mi_memid_t meta_memid;
|
||||
mi_arena_t* arena = (mi_arena_t*)_mi_arena_meta_zalloc(asize, &meta_memid);
|
||||
if (arena == NULL) return false;
|
||||
|
||||
// already zero'd due to zalloc
|
||||
// _mi_memzero(arena, asize);
|
||||
arena->id = _mi_arena_id_none();
|
||||
arena->memid = memid;
|
||||
arena->exclusive = exclusive;
|
||||
arena->meta_size = asize;
|
||||
arena->meta_memid = meta_memid;
|
||||
arena->block_count = bcount;
|
||||
arena->field_count = fields;
|
||||
arena->start = (uint8_t*)start;
|
||||
arena->numa_node = numa_node; // TODO: or get the current numa node if -1? (now it allows anyone to allocate on -1)
|
||||
arena->is_large = is_large;
|
||||
arena->purge_expire = 0;
|
||||
arena->search_idx = 0;
|
||||
mi_lock_init(&arena->abandoned_visit_lock);
|
||||
// consecutive bitmaps
|
||||
arena->blocks_dirty = &arena->blocks_inuse[fields]; // just after inuse bitmap
|
||||
arena->blocks_abandoned = &arena->blocks_inuse[2 * fields]; // just after dirty bitmap
|
||||
arena->blocks_committed = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[3*fields]); // just after abandoned bitmap
|
||||
arena->blocks_purge = (arena->memid.is_pinned ? NULL : &arena->blocks_inuse[4*fields]); // just after committed bitmap
|
||||
// initialize committed bitmap?
|
||||
if (arena->blocks_committed != NULL && arena->memid.initially_committed) {
|
||||
memset((void*)arena->blocks_committed, 0xFF, fields*sizeof(mi_bitmap_field_t)); // cast to void* to avoid atomic warning
|
||||
}
|
||||
|
||||
// and claim leftover blocks if needed (so we never allocate there)
|
||||
ptrdiff_t post = (fields * MI_BITMAP_FIELD_BITS) - bcount;
|
||||
mi_assert_internal(post >= 0);
|
||||
if (post > 0) {
|
||||
// don't use leftover bits at the end
|
||||
mi_bitmap_index_t postidx = mi_bitmap_index_create(fields - 1, MI_BITMAP_FIELD_BITS - post);
|
||||
_mi_bitmap_claim(arena->blocks_inuse, fields, post, postidx, NULL);
|
||||
}
|
||||
return mi_arena_add(arena, arena_id, &_mi_stats_main);
|
||||
|
||||
}
|
||||
|
||||
bool mi_manage_os_memory_ex(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
|
||||
mi_memid_t memid = _mi_memid_create(MI_MEM_EXTERNAL);
|
||||
memid.initially_committed = is_committed;
|
||||
memid.initially_zero = is_zero;
|
||||
memid.is_pinned = is_large;
|
||||
return mi_manage_os_memory_ex2(start,size,is_large,numa_node,exclusive,memid, arena_id);
|
||||
}
|
||||
|
||||
// Reserve a range of regular OS memory
|
||||
int mi_reserve_os_memory_ex(size_t size, bool commit, bool allow_large, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
|
||||
if (arena_id != NULL) *arena_id = _mi_arena_id_none();
|
||||
size = _mi_align_up(size, MI_ARENA_SLICE_SIZE); // at least one block
|
||||
mi_memid_t memid;
|
||||
void* start = _mi_os_alloc_aligned(size, MI_SEGMENT_ALIGN, commit, allow_large, &memid, &_mi_stats_main);
|
||||
if (start == NULL) return ENOMEM;
|
||||
const bool is_large = memid.is_pinned; // todo: use separate is_large field?
|
||||
if (!mi_manage_os_memory_ex2(start, size, is_large, -1 /* numa node */, exclusive, memid, arena_id)) {
|
||||
_mi_os_free_ex(start, size, commit, memid, &_mi_stats_main);
|
||||
_mi_verbose_message("failed to reserve %zu KiB memory\n", _mi_divide_up(size, 1024));
|
||||
return ENOMEM;
|
||||
}
|
||||
_mi_verbose_message("reserved %zu KiB memory%s\n", _mi_divide_up(size, 1024), is_large ? " (in large os pages)" : "");
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// Manage a range of regular OS memory
|
||||
bool mi_manage_os_memory(void* start, size_t size, bool is_committed, bool is_large, bool is_zero, int numa_node) mi_attr_noexcept {
|
||||
return mi_manage_os_memory_ex(start, size, is_committed, is_large, is_zero, numa_node, false /* exclusive? */, NULL);
|
||||
}
|
||||
|
||||
// Reserve a range of regular OS memory
|
||||
int mi_reserve_os_memory(size_t size, bool commit, bool allow_large) mi_attr_noexcept {
|
||||
return mi_reserve_os_memory_ex(size, commit, allow_large, false, NULL);
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Debugging
|
||||
----------------------------------------------------------- */
|
||||
|
||||
static size_t mi_debug_show_bitmap(const char* prefix, const char* header, size_t block_count, mi_bitmap_field_t* fields, size_t field_count ) {
|
||||
_mi_verbose_message("%s%s:\n", prefix, header);
|
||||
size_t bcount = 0;
|
||||
size_t inuse_count = 0;
|
||||
for (size_t i = 0; i < field_count; i++) {
|
||||
char buf[MI_BITMAP_FIELD_BITS + 1];
|
||||
uintptr_t field = mi_atomic_load_relaxed(&fields[i]);
|
||||
for (size_t bit = 0; bit < MI_BITMAP_FIELD_BITS; bit++, bcount++) {
|
||||
if (bcount < block_count) {
|
||||
bool inuse = ((((uintptr_t)1 << bit) & field) != 0);
|
||||
if (inuse) inuse_count++;
|
||||
buf[bit] = (inuse ? 'x' : '.');
|
||||
}
|
||||
else {
|
||||
buf[bit] = ' ';
|
||||
}
|
||||
}
|
||||
buf[MI_BITMAP_FIELD_BITS] = 0;
|
||||
_mi_verbose_message("%s %s\n", prefix, buf);
|
||||
}
|
||||
_mi_verbose_message("%s total ('x'): %zu\n", prefix, inuse_count);
|
||||
return inuse_count;
|
||||
}
|
||||
|
||||
void mi_debug_show_arenas(bool show_inuse, bool show_abandoned, bool show_purge) mi_attr_noexcept {
|
||||
size_t max_arenas = mi_atomic_load_relaxed(&mi_arena_count);
|
||||
size_t inuse_total = 0;
|
||||
size_t abandoned_total = 0;
|
||||
size_t purge_total = 0;
|
||||
for (size_t i = 0; i < max_arenas; i++) {
|
||||
mi_arena_t* arena = mi_atomic_load_ptr_relaxed(mi_arena_t, &mi_arenas[i]);
|
||||
if (arena == NULL) break;
|
||||
_mi_verbose_message("arena %zu: %zu blocks of size %zuMiB (in %zu fields) %s\n", i, arena->block_count, MI_ARENA_SLICE_SIZE / MI_MiB, arena->field_count, (arena->memid.is_pinned ? ", pinned" : ""));
|
||||
if (show_inuse) {
|
||||
inuse_total += mi_debug_show_bitmap(" ", "inuse blocks", arena->block_count, arena->blocks_inuse, arena->field_count);
|
||||
}
|
||||
if (arena->blocks_committed != NULL) {
|
||||
mi_debug_show_bitmap(" ", "committed blocks", arena->block_count, arena->blocks_committed, arena->field_count);
|
||||
}
|
||||
if (show_abandoned) {
|
||||
abandoned_total += mi_debug_show_bitmap(" ", "abandoned blocks", arena->block_count, arena->blocks_abandoned, arena->field_count);
|
||||
}
|
||||
if (show_purge && arena->blocks_purge != NULL) {
|
||||
purge_total += mi_debug_show_bitmap(" ", "purgeable blocks", arena->block_count, arena->blocks_purge, arena->field_count);
|
||||
}
|
||||
}
|
||||
if (show_inuse) _mi_verbose_message("total inuse blocks : %zu\n", inuse_total);
|
||||
if (show_abandoned) _mi_verbose_message("total abandoned blocks: %zu\n", abandoned_total);
|
||||
if (show_purge) _mi_verbose_message("total purgeable blocks: %zu\n", purge_total);
|
||||
}
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Reserve a huge page arena.
|
||||
----------------------------------------------------------- */
|
||||
// reserve at a specific numa node
|
||||
int mi_reserve_huge_os_pages_at_ex(size_t pages, int numa_node, size_t timeout_msecs, bool exclusive, mi_arena_id_t* arena_id) mi_attr_noexcept {
|
||||
if (arena_id != NULL) *arena_id = -1;
|
||||
if (pages==0) return 0;
|
||||
if (numa_node < -1) numa_node = -1;
|
||||
if (numa_node >= 0) numa_node = numa_node % _mi_os_numa_node_count();
|
||||
size_t hsize = 0;
|
||||
size_t pages_reserved = 0;
|
||||
mi_memid_t memid;
|
||||
void* p = _mi_os_alloc_huge_os_pages(pages, numa_node, timeout_msecs, &pages_reserved, &hsize, &memid);
|
||||
if (p==NULL || pages_reserved==0) {
|
||||
_mi_warning_message("failed to reserve %zu GiB huge pages\n", pages);
|
||||
return ENOMEM;
|
||||
}
|
||||
_mi_verbose_message("numa node %i: reserved %zu GiB huge pages (of the %zu GiB requested)\n", numa_node, pages_reserved, pages);
|
||||
|
||||
if (!mi_manage_os_memory_ex2(p, hsize, true, numa_node, exclusive, memid, arena_id)) {
|
||||
_mi_os_free(p, hsize, memid, &_mi_stats_main);
|
||||
return ENOMEM;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int mi_reserve_huge_os_pages_at(size_t pages, int numa_node, size_t timeout_msecs) mi_attr_noexcept {
|
||||
return mi_reserve_huge_os_pages_at_ex(pages, numa_node, timeout_msecs, false, NULL);
|
||||
}
|
||||
|
||||
// reserve huge pages evenly among the given number of numa nodes (or use the available ones as detected)
|
||||
int mi_reserve_huge_os_pages_interleave(size_t pages, size_t numa_nodes, size_t timeout_msecs) mi_attr_noexcept {
|
||||
if (pages == 0) return 0;
|
||||
|
||||
// pages per numa node
|
||||
size_t numa_count = (numa_nodes > 0 ? numa_nodes : _mi_os_numa_node_count());
|
||||
if (numa_count <= 0) numa_count = 1;
|
||||
const size_t pages_per = pages / numa_count;
|
||||
const size_t pages_mod = pages % numa_count;
|
||||
const size_t timeout_per = (timeout_msecs==0 ? 0 : (timeout_msecs / numa_count) + 50);
|
||||
|
||||
// reserve evenly among numa nodes
|
||||
for (size_t numa_node = 0; numa_node < numa_count && pages > 0; numa_node++) {
|
||||
size_t node_pages = pages_per; // can be 0
|
||||
if (numa_node < pages_mod) node_pages++;
|
||||
int err = mi_reserve_huge_os_pages_at(node_pages, (int)numa_node, timeout_per);
|
||||
if (err) return err;
|
||||
if (pages < node_pages) {
|
||||
pages = 0;
|
||||
}
|
||||
else {
|
||||
pages -= node_pages;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int mi_reserve_huge_os_pages(size_t pages, double max_secs, size_t* pages_reserved) mi_attr_noexcept {
|
||||
MI_UNUSED(max_secs);
|
||||
_mi_warning_message("mi_reserve_huge_os_pages is deprecated: use mi_reserve_huge_os_pages_interleave/at instead\n");
|
||||
if (pages_reserved != NULL) *pages_reserved = 0;
|
||||
int err = mi_reserve_huge_os_pages_interleave(pages, 0, (size_t)(max_secs * 1000.0));
|
||||
if (err==0 && pages_reserved!=NULL) *pages_reserved = pages;
|
||||
return err;
|
||||
}
|
||||
|
||||
|
|
@ -1,20 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2019-2024, Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc/internal.h"
|
||||
#include "bitmap.h"
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Arena allocation
|
||||
----------------------------------------------------------- */
|
||||
|
419
src/bitmap-old.c
419
src/bitmap-old.c
|
@ -1,419 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2019-2023 Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Concurrent bitmap that can set/reset sequences of bits atomically,
|
||||
represented as an array of fields where each field is a machine word (`size_t`)
|
||||
|
||||
There are two api's; the standard one cannot have sequences that cross
|
||||
between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS).
|
||||
|
||||
The `_across` postfixed functions do allow sequences that can cross over
|
||||
between the fields. (This is used in arena allocation)
|
||||
---------------------------------------------------------------------------- */
|
||||
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc/internal.h"
|
||||
#include "mimalloc/bits.h"
|
||||
#include "bitmap.h"
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Bitmap definition
|
||||
----------------------------------------------------------- */
|
||||
|
||||
// The bit mask for a given number of blocks at a specified bit index.
|
||||
static inline size_t mi_bitmap_mask_(size_t count, size_t bitidx) {
|
||||
mi_assert_internal(count + bitidx <= MI_BITMAP_FIELD_BITS);
|
||||
mi_assert_internal(count > 0);
|
||||
if (count >= MI_BITMAP_FIELD_BITS) return MI_BITMAP_FIELD_FULL;
|
||||
if (count == 0) return 0;
|
||||
return ((((size_t)1 << count) - 1) << bitidx);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Claim a bit sequence atomically
|
||||
----------------------------------------------------------- */
|
||||
|
||||
// Try to atomically claim a sequence of `count` bits in a single
|
||||
// field at `idx` in `bitmap`. Returns `true` on success.
|
||||
bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx)
|
||||
{
|
||||
mi_assert_internal(bitmap_idx != NULL);
|
||||
mi_assert_internal(count <= MI_BITMAP_FIELD_BITS);
|
||||
mi_bitmap_field_t* field = &bitmap[idx];
|
||||
size_t map = mi_atomic_load_relaxed(field);
|
||||
if (map==MI_BITMAP_FIELD_FULL) return false; // short cut
|
||||
|
||||
// search for 0-bit sequence of length count
|
||||
const size_t mask = mi_bitmap_mask_(count, 0);
|
||||
const size_t bitidx_max = MI_BITMAP_FIELD_BITS - count;
|
||||
|
||||
#if MI_HAS_FAST_BITSCAN
|
||||
size_t bitidx = mi_ctz(~map); // quickly find the first zero bit if possible
|
||||
#else
|
||||
size_t bitidx = 0; // otherwise start at 0
|
||||
#endif
|
||||
size_t m = (mask << bitidx); // invariant: m == mask shifted by bitidx
|
||||
|
||||
// scan linearly for a free range of zero bits
|
||||
while (bitidx <= bitidx_max) {
|
||||
const size_t mapm = (map & m);
|
||||
if (mapm == 0) { // are the mask bits free at bitidx?
|
||||
mi_assert_internal((m >> bitidx) == mask); // no overflow?
|
||||
const size_t newmap = (map | m);
|
||||
mi_assert_internal((newmap^map) >> bitidx == mask);
|
||||
if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { // TODO: use weak cas here?
|
||||
// no success, another thread claimed concurrently.. keep going (with updated `map`)
|
||||
continue;
|
||||
}
|
||||
else {
|
||||
// success, we claimed the bits!
|
||||
*bitmap_idx = mi_bitmap_index_create(idx, bitidx);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// on to the next bit range
|
||||
#if MI_HAS_FAST_BITSCAN
|
||||
mi_assert_internal(mapm != 0);
|
||||
const size_t shift = (count == 1 ? 1 : (MI_INTPTR_BITS - mi_clz(mapm) - bitidx));
|
||||
mi_assert_internal(shift > 0 && shift <= count);
|
||||
#else
|
||||
const size_t shift = 1;
|
||||
#endif
|
||||
bitidx += shift;
|
||||
m <<= shift;
|
||||
}
|
||||
}
|
||||
// no bits found
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
|
||||
// For now, `count` can be at most MI_BITMAP_FIELD_BITS and will never cross fields.
|
||||
bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx) {
|
||||
size_t idx = start_field_idx;
|
||||
for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) {
|
||||
if (idx >= bitmap_fields) { idx = 0; } // wrap
|
||||
if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 0 atomically
|
||||
// Returns `true` if all `count` bits were 1 previously.
|
||||
bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
|
||||
const size_t idx = mi_bitmap_index_field(bitmap_idx);
|
||||
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
|
||||
const size_t mask = mi_bitmap_mask_(count, bitidx);
|
||||
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
|
||||
// mi_assert_internal((bitmap[idx] & mask) == mask);
|
||||
const size_t prev = mi_atomic_and_acq_rel(&bitmap[idx], ~mask);
|
||||
return ((prev & mask) == mask);
|
||||
}
|
||||
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 1 atomically
|
||||
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
|
||||
bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero) {
|
||||
const size_t idx = mi_bitmap_index_field(bitmap_idx);
|
||||
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
|
||||
const size_t mask = mi_bitmap_mask_(count, bitidx);
|
||||
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
|
||||
//mi_assert_internal(any_zero != NULL || (bitmap[idx] & mask) == 0);
|
||||
size_t prev = mi_atomic_or_acq_rel(&bitmap[idx], mask);
|
||||
if (any_zero != NULL) { *any_zero = ((prev & mask) != mask); }
|
||||
return ((prev & mask) == 0);
|
||||
}
|
||||
|
||||
// Returns `true` if all `count` bits were 1. `any_ones` is `true` if there was at least one bit set to one.
|
||||
static bool mi_bitmap_is_claimedx(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_ones) {
|
||||
const size_t idx = mi_bitmap_index_field(bitmap_idx);
|
||||
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
|
||||
const size_t mask = mi_bitmap_mask_(count, bitidx);
|
||||
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
|
||||
const size_t field = mi_atomic_load_relaxed(&bitmap[idx]);
|
||||
if (any_ones != NULL) { *any_ones = ((field & mask) != 0); }
|
||||
return ((field & mask) == mask);
|
||||
}
|
||||
|
||||
// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically.
|
||||
// Returns `true` if successful when all previous `count` bits were 0.
|
||||
bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
|
||||
const size_t idx = mi_bitmap_index_field(bitmap_idx);
|
||||
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
|
||||
const size_t mask = mi_bitmap_mask_(count, bitidx);
|
||||
mi_assert_internal(bitmap_fields > idx); MI_UNUSED(bitmap_fields);
|
||||
size_t expected = mi_atomic_load_relaxed(&bitmap[idx]);
|
||||
do {
|
||||
if ((expected & mask) != 0) return false;
|
||||
}
|
||||
while (!mi_atomic_cas_strong_acq_rel(&bitmap[idx], &expected, expected | mask));
|
||||
mi_assert_internal((expected & mask) == 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
|
||||
return mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, NULL);
|
||||
}
|
||||
|
||||
bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
|
||||
bool any_ones;
|
||||
mi_bitmap_is_claimedx(bitmap, bitmap_fields, count, bitmap_idx, &any_ones);
|
||||
return any_ones;
|
||||
}
|
||||
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// the `_across` functions work on bitmaps where sequences can cross over
|
||||
// between the fields. This is used in arena allocation
|
||||
//--------------------------------------------------------------------------
|
||||
|
||||
// Try to atomically claim a sequence of `count` bits starting from the field
|
||||
// at `idx` in `bitmap` and crossing into subsequent fields. Returns `true` on success.
|
||||
// Only needs to consider crossing into the next fields (see `mi_bitmap_try_find_from_claim_across`)
|
||||
static bool mi_bitmap_try_find_claim_field_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t idx, const size_t count, const size_t retries, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats)
|
||||
{
|
||||
mi_assert_internal(bitmap_idx != NULL);
|
||||
|
||||
// check initial trailing zeros
|
||||
mi_bitmap_field_t* field = &bitmap[idx];
|
||||
size_t map = mi_atomic_load_relaxed(field);
|
||||
const size_t initial = mi_clz(map); // count of initial zeros starting at idx
|
||||
mi_assert_internal(initial <= MI_BITMAP_FIELD_BITS);
|
||||
if (initial == 0) return false;
|
||||
if (initial >= count) return _mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx); // no need to cross fields (this case won't happen for us)
|
||||
if (_mi_divide_up(count - initial, MI_BITMAP_FIELD_BITS) >= (bitmap_fields - idx)) return false; // not enough entries
|
||||
|
||||
// scan ahead
|
||||
size_t found = initial;
|
||||
size_t mask = 0; // mask bits for the final field
|
||||
while(found < count) {
|
||||
field++;
|
||||
map = mi_atomic_load_relaxed(field);
|
||||
const size_t mask_bits = (found + MI_BITMAP_FIELD_BITS <= count ? MI_BITMAP_FIELD_BITS : (count - found));
|
||||
mi_assert_internal(mask_bits > 0 && mask_bits <= MI_BITMAP_FIELD_BITS);
|
||||
mask = mi_bitmap_mask_(mask_bits, 0);
|
||||
if ((map & mask) != 0) return false; // some part is already claimed
|
||||
found += mask_bits;
|
||||
}
|
||||
mi_assert_internal(field < &bitmap[bitmap_fields]);
|
||||
|
||||
// we found a range of contiguous zeros up to the final field; mask contains mask in the final field
|
||||
// now try to claim the range atomically
|
||||
mi_bitmap_field_t* const final_field = field;
|
||||
const size_t final_mask = mask;
|
||||
mi_bitmap_field_t* const initial_field = &bitmap[idx];
|
||||
const size_t initial_idx = MI_BITMAP_FIELD_BITS - initial;
|
||||
const size_t initial_mask = mi_bitmap_mask_(initial, initial_idx);
|
||||
|
||||
// initial field
|
||||
size_t newmap;
|
||||
field = initial_field;
|
||||
map = mi_atomic_load_relaxed(field);
|
||||
do {
|
||||
newmap = (map | initial_mask);
|
||||
if ((map & initial_mask) != 0) { goto rollback; };
|
||||
} while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap));
|
||||
|
||||
// intermediate fields
|
||||
while (++field < final_field) {
|
||||
newmap = mi_bitmap_mask_(MI_BITMAP_FIELD_BITS, 0);
|
||||
map = 0;
|
||||
if (!mi_atomic_cas_strong_acq_rel(field, &map, newmap)) { goto rollback; }
|
||||
}
|
||||
|
||||
// final field
|
||||
mi_assert_internal(field == final_field);
|
||||
map = mi_atomic_load_relaxed(field);
|
||||
do {
|
||||
newmap = (map | final_mask);
|
||||
if ((map & final_mask) != 0) { goto rollback; }
|
||||
} while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap));
|
||||
|
||||
// claimed!
|
||||
mi_stat_counter_increase(stats->arena_crossover_count,1);
|
||||
*bitmap_idx = mi_bitmap_index_create(idx, initial_idx);
|
||||
return true;
|
||||
|
||||
rollback:
|
||||
// roll back intermediate fields
|
||||
// (we just failed to claim `field` so decrement first)
|
||||
while (--field > initial_field) {
|
||||
newmap = 0;
|
||||
map = mi_bitmap_mask_(MI_BITMAP_FIELD_BITS, 0);
|
||||
mi_assert_internal(mi_atomic_load_relaxed(field) == map);
|
||||
mi_atomic_store_release(field, newmap);
|
||||
}
|
||||
if (field == initial_field) { // (if we failed on the initial field, `field + 1 == initial_field`)
|
||||
map = mi_atomic_load_relaxed(field);
|
||||
do {
|
||||
mi_assert_internal((map & initial_mask) == initial_mask);
|
||||
newmap = (map & ~initial_mask);
|
||||
} while (!mi_atomic_cas_strong_acq_rel(field, &map, newmap));
|
||||
}
|
||||
mi_stat_counter_increase(stats->arena_rollback_count,1);
|
||||
// retry? (we make a recursive call instead of goto to be able to use const declarations)
|
||||
if (retries <= 2) {
|
||||
return mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, retries+1, bitmap_idx, stats);
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Find `count` bits of zeros and set them to 1 atomically; returns `true` on success.
|
||||
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
|
||||
bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats) {
|
||||
mi_assert_internal(count > 0);
|
||||
if (count <= 2) {
|
||||
// we don't bother with crossover fields for small counts
|
||||
return _mi_bitmap_try_find_from_claim(bitmap, bitmap_fields, start_field_idx, count, bitmap_idx);
|
||||
}
|
||||
|
||||
// visit the fields
|
||||
size_t idx = start_field_idx;
|
||||
for (size_t visited = 0; visited < bitmap_fields; visited++, idx++) {
|
||||
if (idx >= bitmap_fields) { idx = 0; } // wrap
|
||||
// first try to claim inside a field
|
||||
/*
|
||||
if (count <= MI_BITMAP_FIELD_BITS) {
|
||||
if (_mi_bitmap_try_find_claim_field(bitmap, idx, count, bitmap_idx)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
*/
|
||||
// if that fails, then try to claim across fields
|
||||
if (mi_bitmap_try_find_claim_field_across(bitmap, bitmap_fields, idx, count, 0, bitmap_idx, stats)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Helper for masks across fields; returns the mid count, post_mask may be 0
|
||||
static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, size_t* pre_mask, size_t* mid_mask, size_t* post_mask) {
|
||||
MI_UNUSED(bitmap_fields);
|
||||
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
|
||||
if mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS) {
|
||||
*pre_mask = mi_bitmap_mask_(count, bitidx);
|
||||
*mid_mask = 0;
|
||||
*post_mask = 0;
|
||||
mi_assert_internal(mi_bitmap_index_field(bitmap_idx) < bitmap_fields);
|
||||
return 0;
|
||||
}
|
||||
else {
|
||||
const size_t pre_bits = MI_BITMAP_FIELD_BITS - bitidx;
|
||||
mi_assert_internal(pre_bits < count);
|
||||
*pre_mask = mi_bitmap_mask_(pre_bits, bitidx);
|
||||
count -= pre_bits;
|
||||
const size_t mid_count = (count / MI_BITMAP_FIELD_BITS);
|
||||
*mid_mask = MI_BITMAP_FIELD_FULL;
|
||||
count %= MI_BITMAP_FIELD_BITS;
|
||||
*post_mask = (count==0 ? 0 : mi_bitmap_mask_(count, 0));
|
||||
mi_assert_internal(mi_bitmap_index_field(bitmap_idx) + mid_count + (count==0 ? 0 : 1) < bitmap_fields);
|
||||
return mid_count;
|
||||
}
|
||||
}
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 0 atomically
|
||||
// Returns `true` if all `count` bits were 1 previously.
|
||||
bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
|
||||
size_t idx = mi_bitmap_index_field(bitmap_idx);
|
||||
size_t pre_mask;
|
||||
size_t mid_mask;
|
||||
size_t post_mask;
|
||||
size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask);
|
||||
bool all_one = true;
|
||||
mi_bitmap_field_t* field = &bitmap[idx];
|
||||
size_t prev = mi_atomic_and_acq_rel(field++, ~pre_mask); // clear first part
|
||||
if ((prev & pre_mask) != pre_mask) all_one = false;
|
||||
while(mid_count-- > 0) {
|
||||
prev = mi_atomic_and_acq_rel(field++, ~mid_mask); // clear mid part
|
||||
if ((prev & mid_mask) != mid_mask) all_one = false;
|
||||
}
|
||||
if (post_mask!=0) {
|
||||
prev = mi_atomic_and_acq_rel(field, ~post_mask); // clear end part
|
||||
if ((prev & post_mask) != post_mask) all_one = false;
|
||||
}
|
||||
return all_one;
|
||||
}
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 1 atomically
|
||||
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
|
||||
bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero) {
|
||||
size_t idx = mi_bitmap_index_field(bitmap_idx);
|
||||
size_t pre_mask;
|
||||
size_t mid_mask;
|
||||
size_t post_mask;
|
||||
size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask);
|
||||
bool all_zero = true;
|
||||
bool any_zero = false;
|
||||
_Atomic(size_t)*field = &bitmap[idx];
|
||||
size_t prev = mi_atomic_or_acq_rel(field++, pre_mask);
|
||||
if ((prev & pre_mask) != 0) all_zero = false;
|
||||
if ((prev & pre_mask) != pre_mask) any_zero = true;
|
||||
while (mid_count-- > 0) {
|
||||
prev = mi_atomic_or_acq_rel(field++, mid_mask);
|
||||
if ((prev & mid_mask) != 0) all_zero = false;
|
||||
if ((prev & mid_mask) != mid_mask) any_zero = true;
|
||||
}
|
||||
if (post_mask!=0) {
|
||||
prev = mi_atomic_or_acq_rel(field, post_mask);
|
||||
if ((prev & post_mask) != 0) all_zero = false;
|
||||
if ((prev & post_mask) != post_mask) any_zero = true;
|
||||
}
|
||||
if (pany_zero != NULL) { *pany_zero = any_zero; }
|
||||
return all_zero;
|
||||
}
|
||||
|
||||
|
||||
// Returns `true` if all `count` bits were 1.
|
||||
// `any_ones` is `true` if there was at least one bit set to one.
|
||||
static bool mi_bitmap_is_claimedx_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_ones) {
|
||||
size_t idx = mi_bitmap_index_field(bitmap_idx);
|
||||
size_t pre_mask;
|
||||
size_t mid_mask;
|
||||
size_t post_mask;
|
||||
size_t mid_count = mi_bitmap_mask_across(bitmap_idx, bitmap_fields, count, &pre_mask, &mid_mask, &post_mask);
|
||||
bool all_ones = true;
|
||||
bool any_ones = false;
|
||||
mi_bitmap_field_t* field = &bitmap[idx];
|
||||
size_t prev = mi_atomic_load_relaxed(field++);
|
||||
if ((prev & pre_mask) != pre_mask) all_ones = false;
|
||||
if ((prev & pre_mask) != 0) any_ones = true;
|
||||
while (mid_count-- > 0) {
|
||||
prev = mi_atomic_load_relaxed(field++);
|
||||
if ((prev & mid_mask) != mid_mask) all_ones = false;
|
||||
if ((prev & mid_mask) != 0) any_ones = true;
|
||||
}
|
||||
if (post_mask!=0) {
|
||||
prev = mi_atomic_load_relaxed(field);
|
||||
if ((prev & post_mask) != post_mask) all_ones = false;
|
||||
if ((prev & post_mask) != 0) any_ones = true;
|
||||
}
|
||||
if (pany_ones != NULL) { *pany_ones = any_ones; }
|
||||
return all_ones;
|
||||
}
|
||||
|
||||
bool _mi_bitmap_is_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
|
||||
return mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, NULL);
|
||||
}
|
||||
|
||||
bool _mi_bitmap_is_any_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx) {
|
||||
bool any_ones;
|
||||
mi_bitmap_is_claimedx_across(bitmap, bitmap_fields, count, bitmap_idx, &any_ones);
|
||||
return any_ones;
|
||||
}
|
110
src/bitmap-old.h
110
src/bitmap-old.h
|
@ -1,110 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2019-2023 Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Concurrent bitmap that can set/reset sequences of bits atomically,
|
||||
represented as an array of fields where each field is a machine word (`size_t`)
|
||||
|
||||
There are two api's; the standard one cannot have sequences that cross
|
||||
between the bitmap fields (and a sequence must be <= MI_BITMAP_FIELD_BITS).
|
||||
(this is used in region allocation)
|
||||
|
||||
The `_across` postfixed functions do allow sequences that can cross over
|
||||
between the fields. (This is used in arena allocation)
|
||||
---------------------------------------------------------------------------- */
|
||||
#pragma once
|
||||
#ifndef MI_BITMAP_H
|
||||
#define MI_BITMAP_H
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Bitmap definition
|
||||
----------------------------------------------------------- */
|
||||
|
||||
#define MI_BITMAP_FIELD_BITS (8*MI_SIZE_SIZE)
|
||||
#define MI_BITMAP_FIELD_FULL (~((size_t)0)) // all bits set
|
||||
|
||||
// An atomic bitmap of `size_t` fields
|
||||
typedef _Atomic(size_t) mi_bitmap_field_t;
|
||||
typedef mi_bitmap_field_t* mi_bitmap_t;
|
||||
|
||||
// A bitmap index is the index of the bit in a bitmap.
|
||||
typedef size_t mi_bitmap_index_t;
|
||||
|
||||
// Create a bit index.
|
||||
static inline mi_bitmap_index_t mi_bitmap_index_create_ex(size_t idx, size_t bitidx) {
|
||||
mi_assert_internal(bitidx <= MI_BITMAP_FIELD_BITS);
|
||||
return (idx*MI_BITMAP_FIELD_BITS) + bitidx;
|
||||
}
|
||||
static inline mi_bitmap_index_t mi_bitmap_index_create(size_t idx, size_t bitidx) {
|
||||
mi_assert_internal(bitidx < MI_BITMAP_FIELD_BITS);
|
||||
return mi_bitmap_index_create_ex(idx,bitidx);
|
||||
}
|
||||
|
||||
// Get the field index from a bit index.
|
||||
static inline size_t mi_bitmap_index_field(mi_bitmap_index_t bitmap_idx) {
|
||||
return (bitmap_idx / MI_BITMAP_FIELD_BITS);
|
||||
}
|
||||
|
||||
// Get the bit index in a bitmap field
|
||||
static inline size_t mi_bitmap_index_bit_in_field(mi_bitmap_index_t bitmap_idx) {
|
||||
return (bitmap_idx % MI_BITMAP_FIELD_BITS);
|
||||
}
|
||||
|
||||
// Get the full bit index
|
||||
static inline size_t mi_bitmap_index_bit(mi_bitmap_index_t bitmap_idx) {
|
||||
return bitmap_idx;
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Claim a bit sequence atomically
|
||||
----------------------------------------------------------- */
|
||||
|
||||
// Try to atomically claim a sequence of `count` bits in a single
|
||||
// field at `idx` in `bitmap`. Returns `true` on success.
|
||||
bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx);
|
||||
|
||||
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
|
||||
// For now, `count` can be at most MI_BITMAP_FIELD_BITS and will never cross fields.
|
||||
bool _mi_bitmap_try_find_from_claim(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx);
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 0 atomically
|
||||
// Returns `true` if all `count` bits were 1 previously.
|
||||
bool _mi_bitmap_unclaim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
|
||||
|
||||
// Try to set `count` bits at `bitmap_idx` from 0 to 1 atomically.
|
||||
// Returns `true` if successful when all previous `count` bits were 0.
|
||||
bool _mi_bitmap_try_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 1 atomically
|
||||
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
|
||||
bool _mi_bitmap_claim(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* any_zero);
|
||||
|
||||
bool _mi_bitmap_is_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
|
||||
bool _mi_bitmap_is_any_claimed(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
|
||||
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// the `_across` functions work on bitmaps where sequences can cross over
|
||||
// between the fields. This is used in arena allocation
|
||||
//--------------------------------------------------------------------------
|
||||
|
||||
// Find `count` bits of zeros and set them to 1 atomically; returns `true` on success.
|
||||
// Starts at idx, and wraps around to search in all `bitmap_fields` fields.
|
||||
bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitmap_fields, const size_t start_field_idx, const size_t count, mi_bitmap_index_t* bitmap_idx, mi_stats_t* stats);
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 0 atomically
|
||||
// Returns `true` if all `count` bits were 1 previously.
|
||||
bool _mi_bitmap_unclaim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
|
||||
|
||||
// Set `count` bits at `bitmap_idx` to 1 atomically
|
||||
// Returns `true` if all `count` bits were 0 previously. `any_zero` is `true` if there was at least one zero bit.
|
||||
bool _mi_bitmap_claim_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx, bool* pany_zero);
|
||||
|
||||
bool _mi_bitmap_is_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
|
||||
bool _mi_bitmap_is_any_claimed_across(mi_bitmap_t bitmap, size_t bitmap_fields, size_t count, mi_bitmap_index_t bitmap_idx);
|
||||
|
||||
#endif
|
53
src/page.c
53
src/page.c
|
@ -339,59 +339,6 @@ static void mi_page_to_full(mi_page_t* page, mi_page_queue_t* pq) {
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
// Abandon a page with used blocks at the end of a thread.
|
||||
// Note: only call if it is ensured that no references exist from
|
||||
// the `page->heap->thread_delayed_free` into this page.
|
||||
// Currently only called through `mi_heap_collect_ex` which ensures this.
|
||||
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq) {
|
||||
mi_assert_internal(page != NULL);
|
||||
mi_assert_expensive(_mi_page_is_valid(page));
|
||||
mi_assert_internal(pq == mi_page_queue_of(page));
|
||||
mi_assert_internal(mi_page_heap(page) != NULL);
|
||||
|
||||
mi_heap_t* pheap = mi_page_heap(page);
|
||||
|
||||
// remove from our page list
|
||||
mi_page_queue_remove(pq, page);
|
||||
|
||||
// page is no longer associated with our heap
|
||||
mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
|
||||
mi_page_set_heap(page, NULL);
|
||||
|
||||
#if (MI_DEBUG>1) && !MI_TRACK_ENABLED
|
||||
// check there are no references left..
|
||||
for (mi_block_t* block = (mi_block_t*)pheap->thread_delayed_free; block != NULL; block = mi_block_nextx(pheap, block, pheap->keys)) {
|
||||
mi_assert_internal(_mi_ptr_page(block) != page);
|
||||
}
|
||||
#endif
|
||||
|
||||
// and abandon it
|
||||
mi_assert_internal(mi_page_is_abandoned(page));
|
||||
_mi_arena_page_abandon(page, pheap->tld);
|
||||
}
|
||||
|
||||
// force abandon a page
|
||||
void _mi_page_force_abandon(mi_page_t* page) {
|
||||
mi_heap_t* heap = mi_page_heap(page);
|
||||
// mark page as not using delayed free
|
||||
_mi_page_use_delayed_free(page, MI_NEVER_DELAYED_FREE, false);
|
||||
|
||||
// ensure this page is no longer in the heap delayed free list
|
||||
_mi_heap_delayed_free_all(heap);
|
||||
// TODO: can we still access the page meta-info even if it is freed?
|
||||
if (page->capacity == 0) return; // it may have been freed now
|
||||
|
||||
// and now unlink it from the page queue and abandon (or free)
|
||||
mi_page_queue_t* pq = mi_heap_page_queue_of(heap, page);
|
||||
if (mi_page_all_free(page)) {
|
||||
_mi_page_free(page, pq, false);
|
||||
}
|
||||
else {
|
||||
_mi_page_abandon(page, pq);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
// Free a page with no more free blocks
|
||||
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq) {
|
||||
|
|
|
@ -1,126 +0,0 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2019-2023, Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
The following functions are to reliably find the segment or
|
||||
block that encompasses any pointer p (or NULL if it is not
|
||||
in any of our segments).
|
||||
We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB)
|
||||
set to 1 if it contains the segment meta data.
|
||||
----------------------------------------------------------- */
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc/internal.h"
|
||||
#include "mimalloc/atomic.h"
|
||||
|
||||
// Reduce total address space to reduce .bss (due to the `mi_segment_map`)
|
||||
#if (MI_INTPTR_SIZE > 4) && MI_TRACK_ASAN
|
||||
#define MI_SEGMENT_MAP_MAX_ADDRESS (128*1024ULL*MI_GiB) // 128 TiB (see issue #881)
|
||||
#elif (MI_INTPTR_SIZE > 4)
|
||||
#define MI_SEGMENT_MAP_MAX_ADDRESS (48*1024ULL*MI_GiB) // 48 TiB
|
||||
#else
|
||||
#define MI_SEGMENT_MAP_MAX_ADDRESS (UINT32_MAX)
|
||||
#endif
|
||||
|
||||
#define MI_SEGMENT_MAP_PART_SIZE (MI_INTPTR_SIZE*MI_KiB - 128) // 128 > sizeof(mi_memid_t) !
|
||||
#define MI_SEGMENT_MAP_PART_BITS (8*MI_SEGMENT_MAP_PART_SIZE)
|
||||
#define MI_SEGMENT_MAP_PART_ENTRIES (MI_SEGMENT_MAP_PART_SIZE / MI_INTPTR_SIZE)
|
||||
#define MI_SEGMENT_MAP_PART_BIT_SPAN (MI_SEGMENT_ALIGN)
|
||||
#define MI_SEGMENT_MAP_PART_SPAN (MI_SEGMENT_MAP_PART_BITS * MI_SEGMENT_MAP_PART_BIT_SPAN)
|
||||
#define MI_SEGMENT_MAP_MAX_PARTS ((MI_SEGMENT_MAP_MAX_ADDRESS / MI_SEGMENT_MAP_PART_SPAN) + 1)
|
||||
|
||||
// A part of the segment map.
|
||||
typedef struct mi_segmap_part_s {
|
||||
mi_memid_t memid;
|
||||
_Atomic(uintptr_t) map[MI_SEGMENT_MAP_PART_ENTRIES];
|
||||
} mi_segmap_part_t;
|
||||
|
||||
// Allocate parts on-demand to reduce .bss footprint
|
||||
static _Atomic(mi_segmap_part_t*) mi_segment_map[MI_SEGMENT_MAP_MAX_PARTS]; // = { NULL, .. }
|
||||
|
||||
static mi_segmap_part_t* mi_segment_map_index_of(const mi_segment_t* segment, bool create_on_demand, size_t* idx, size_t* bitidx) {
|
||||
// note: segment can be invalid or NULL.
|
||||
mi_assert_internal(_mi_ptr_segment(segment + 1) == segment); // is it aligned on MI_SEGMENT_SIZE?
|
||||
*idx = 0;
|
||||
*bitidx = 0;
|
||||
if ((uintptr_t)segment >= MI_SEGMENT_MAP_MAX_ADDRESS) return NULL;
|
||||
const uintptr_t segindex = ((uintptr_t)segment) / MI_SEGMENT_MAP_PART_SPAN;
|
||||
if (segindex >= MI_SEGMENT_MAP_MAX_PARTS) return NULL;
|
||||
mi_segmap_part_t* part = mi_atomic_load_ptr_relaxed(mi_segmap_part_t, &mi_segment_map[segindex]);
|
||||
|
||||
// allocate on demand to reduce .bss footprint
|
||||
if (part == NULL) {
|
||||
if (!create_on_demand) return NULL;
|
||||
mi_memid_t memid;
|
||||
part = (mi_segmap_part_t*)_mi_os_alloc(sizeof(mi_segmap_part_t), &memid, NULL);
|
||||
if (part == NULL) return NULL;
|
||||
mi_segmap_part_t* expected = NULL;
|
||||
if (!mi_atomic_cas_ptr_strong_release(mi_segmap_part_t, &mi_segment_map[segindex], &expected, part)) {
|
||||
_mi_os_free(part, sizeof(mi_segmap_part_t), memid, NULL);
|
||||
part = expected;
|
||||
if (part == NULL) return NULL;
|
||||
}
|
||||
}
|
||||
mi_assert(part != NULL);
|
||||
const uintptr_t offset = ((uintptr_t)segment) % MI_SEGMENT_MAP_PART_SPAN;
|
||||
const uintptr_t bitofs = offset / MI_SEGMENT_MAP_PART_BIT_SPAN;
|
||||
*idx = bitofs / MI_INTPTR_BITS;
|
||||
*bitidx = bitofs % MI_INTPTR_BITS;
|
||||
return part;
|
||||
}
|
||||
|
||||
void _mi_segment_map_allocated_at(const mi_segment_t* segment) {
|
||||
if (segment->memid.memkind == MI_MEM_ARENA) return; // we lookup segments first in the arena's and don't need the segment map
|
||||
size_t index;
|
||||
size_t bitidx;
|
||||
mi_segmap_part_t* part = mi_segment_map_index_of(segment, true /* alloc map if needed */, &index, &bitidx);
|
||||
if (part == NULL) return; // outside our address range..
|
||||
uintptr_t mask = mi_atomic_load_relaxed(&part->map[index]);
|
||||
uintptr_t newmask;
|
||||
do {
|
||||
newmask = (mask | ((uintptr_t)1 << bitidx));
|
||||
} while (!mi_atomic_cas_weak_release(&part->map[index], &mask, newmask));
|
||||
}
|
||||
|
||||
void _mi_segment_map_freed_at(const mi_segment_t* segment) {
|
||||
if (segment->memid.memkind == MI_MEM_ARENA) return;
|
||||
size_t index;
|
||||
size_t bitidx;
|
||||
mi_segmap_part_t* part = mi_segment_map_index_of(segment, false /* don't alloc if not present */, &index, &bitidx);
|
||||
if (part == NULL) return; // outside our address range..
|
||||
uintptr_t mask = mi_atomic_load_relaxed(&part->map[index]);
|
||||
uintptr_t newmask;
|
||||
do {
|
||||
newmask = (mask & ~((uintptr_t)1 << bitidx));
|
||||
} while (!mi_atomic_cas_weak_release(&part->map[index], &mask, newmask));
|
||||
}
|
||||
|
||||
// Determine the segment belonging to a pointer or NULL if it is not in a valid segment.
|
||||
static mi_segment_t* _mi_segment_of(const void* p) {
|
||||
if (p == NULL) return NULL;
|
||||
mi_segment_t* segment = _mi_ptr_segment(p); // segment can be NULL
|
||||
size_t index;
|
||||
size_t bitidx;
|
||||
mi_segmap_part_t* part = mi_segment_map_index_of(segment, false /* dont alloc if not present */, &index, &bitidx);
|
||||
if (part == NULL) return NULL;
|
||||
const uintptr_t mask = mi_atomic_load_relaxed(&part->map[index]);
|
||||
if mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0) {
|
||||
bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie);
|
||||
mi_assert_internal(cookie_ok); MI_UNUSED(cookie_ok);
|
||||
return segment; // yes, allocated by us
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Is this a valid pointer in our heap?
|
||||
static bool mi_is_valid_pointer(const void* p) {
|
||||
// first check if it is in an arena, then check if it is OS allocated
|
||||
return (_mi_arena_contains(p) || _mi_segment_of(p) != NULL);
|
||||
}
|
||||
|
||||
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
|
||||
return mi_is_valid_pointer(p);
|
||||
}
|
1387
src/segment.c
1387
src/segment.c
File diff suppressed because it is too large
Load diff
Loading…
Add table
Reference in a new issue