merge from dev

This commit is contained in:
daan 2020-01-13 18:01:34 -08:00
commit 4a27ea1643
24 changed files with 773 additions and 304 deletions

View file

@ -10,7 +10,7 @@ terms of the MIT license. A copy of the license can be found in the file
#include "mimalloc-types.h"
#if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__))
#if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__) || defined(__DragonFly__))
#define MI_TLS_RECURSE_GUARD
#endif
@ -42,12 +42,17 @@ void _mi_trace_message(const char* fmt, ...);
void _mi_options_init(void);
void _mi_fatal_error(const char* fmt, ...) mi_attr_noreturn;
// "init.c"
// random.c
void _mi_random_init(mi_random_ctx_t* ctx);
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx);
uintptr_t _mi_random_next(mi_random_ctx_t* ctx);
uintptr_t _mi_heap_random_next(mi_heap_t* heap);
static inline uintptr_t _mi_random_shuffle(uintptr_t x);
// init.c
extern mi_stats_t _mi_stats_main;
extern const mi_page_t _mi_page_empty;
bool _mi_is_main_thread(void);
uintptr_t _mi_random_shuffle(uintptr_t x);
uintptr_t _mi_random_init(uintptr_t seed /* can be zero */);
bool _mi_preloading(); // true while the C runtime is not ready
// os.c
@ -86,8 +91,9 @@ void _mi_page_unfull(mi_page_t* page);
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
void _mi_heap_delayed_free(mi_heap_t* heap);
void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay);
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
void _mi_deferred_free(mi_heap_t* heap, bool force);
@ -101,7 +107,6 @@ uint8_t _mi_bsr(uintptr_t x); // bit-scan-right, used on BSD i
// "heap.c"
void _mi_heap_destroy_pages(mi_heap_t* heap);
void _mi_heap_collect_abandon(mi_heap_t* heap);
uintptr_t _mi_heap_random(mi_heap_t* heap);
void _mi_heap_set_default_direct(mi_heap_t* heap);
// "stats.c"
@ -236,7 +241,7 @@ extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate
static inline mi_heap_t* mi_get_default_heap(void) {
#ifdef MI_TLS_RECURSE_GUARD
// on some platforms, like macOS, the dynamic loader calls `malloc`
// on some BSD platforms, like macOS, the dynamic loader calls `malloc`
// to initialize thread local data. To avoid recursion, we need to avoid
// accessing the thread local `_mi_default_heap` until our module is loaded
// and use the statically allocated main heap until that time.
@ -406,12 +411,30 @@ static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
}
// -------------------------------------------------------------------
// Encoding/Decoding the free list next pointers
// Note: we pass a `null` value to be used as the `NULL` value for the
// end of a free list. This is to prevent the cookie itself to ever
// be present among user blocks (as `cookie^0==cookie`).
// -------------------------------------------------------------------
/* -------------------------------------------------------------------
Encoding/Decoding the free list next pointers
This is to protect against buffer overflow exploits where the
free list is mutated. Many hardened allocators xor the next pointer `p`
with a secret key `k1`, as `p^k1`. This prevents overwriting with known
values but might be still too weak: if the attacker can guess
the pointer `p` this can reveal `k1` (since `p^k1^p == k1`).
Moreover, if multiple blocks can be read as well, the attacker can
xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot
about the pointers (and subsequently `k1`).
Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`.
Since these operations are not associative, the above approaches do not
work so well any more even if the `p` can be guesstimated. For example,
for the read case we can subtract two entries to discard the `+k1` term,
but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best.
We include the left-rotation since xor and addition are otherwise linear
in the lowest bit. Finally, both keys are unique per page which reduces
the re-use of keys by a large factor.
We also pass a separate `null` value to be used as `NULL` or otherwise
`(k2<<<k1)+k1` would appear (too) often as a sentinel value.
------------------------------------------------------------------- */
static inline bool mi_is_in_same_segment(const void* p, const void* q) {
return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
@ -423,52 +446,84 @@ static inline bool mi_is_in_same_page(const void* p, const void* q) {
return (_mi_segment_page_of(segment, p) == _mi_segment_page_of(segment, q));
}
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, uintptr_t cookie ) {
static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) {
shift %= MI_INTPTR_BITS;
return ((x << shift) | (x >> (MI_INTPTR_BITS - shift)));
}
static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
shift %= MI_INTPTR_BITS;
return ((x >> shift) | (x << (MI_INTPTR_BITS - shift)));
}
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, uintptr_t key1, uintptr_t key2 ) {
#ifdef MI_ENCODE_FREELIST
mi_block_t* b = (mi_block_t*)(block->next ^ cookie);
mi_block_t* b = (mi_block_t*)(mi_rotr(block->next - key1, key1) ^ key2);
if (mi_unlikely((void*)b==null)) { b = NULL; }
return b;
#else
UNUSED(cookie); UNUSED(null);
UNUSED(key1); UNUSED(key2); UNUSED(null);
return (mi_block_t*)block->next;
#endif
}
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, uintptr_t cookie) {
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, uintptr_t key1, uintptr_t key2) {
#ifdef MI_ENCODE_FREELIST
if (mi_unlikely(next==NULL)) { next = (mi_block_t*)null; }
block->next = (mi_encoded_t)next ^ cookie;
block->next = mi_rotl((uintptr_t)next ^ key2, key1) + key1;
#else
UNUSED(cookie); UNUSED(null);
UNUSED(key1); UNUSED(key2); UNUSED(null);
block->next = (mi_encoded_t)next;
#endif
}
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
#ifdef MI_ENCODE_FREELIST
mi_block_t* next = mi_block_nextx(page,block,page->cookie);
// check for free list corruption: is `next` at least in our segment range?
mi_block_t* next = mi_block_nextx(page,block,page->key[0],page->key[1]);
// check for free list corruption: is `next` at least in the same page?
// TODO: check if `next` is `page->block_size` aligned?
if (next!=NULL && !mi_is_in_same_page(block, next)) {
if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) {
_mi_fatal_error("corrupted free list entry of size %zub at %p: value 0x%zx\n", page->block_size, block, (uintptr_t)next);
next = NULL;
}
return next;
#else
UNUSED(page);
return mi_block_nextx(page,block,0);
return mi_block_nextx(page,block,0,0);
#endif
}
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
#ifdef MI_ENCODE_FREELIST
mi_block_set_nextx(page,block,next, page->cookie);
mi_block_set_nextx(page,block,next, page->key[0], page->key[1]);
#else
UNUSED(page);
mi_block_set_nextx(page,block, next,0);
mi_block_set_nextx(page,block, next,0,0);
#endif
}
// -------------------------------------------------------------------
// Fast "random" shuffle
// -------------------------------------------------------------------
static inline uintptr_t _mi_random_shuffle(uintptr_t x) {
if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros
#if (MI_INTPTR_SIZE==8)
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
x ^= x >> 30;
x *= 0xbf58476d1ce4e5b9UL;
x ^= x >> 27;
x *= 0x94d049bb133111ebUL;
x ^= x >> 31;
#elif (MI_INTPTR_SIZE==4)
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
x ^= x >> 16;
x *= 0x7feb352dUL;
x ^= x >> 15;
x *= 0x846ca68bUL;
x ^= x >> 16;
#endif
return x;
}
// -------------------------------------------------------------------
// Optimize numa node access for the common case (= one node)