mirror of
https://github.com/microsoft/mimalloc.git
synced 2025-07-06 19:38:41 +03:00
merge from dev
This commit is contained in:
commit
4a27ea1643
24 changed files with 773 additions and 304 deletions
|
@ -10,7 +10,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
|||
|
||||
#include "mimalloc-types.h"
|
||||
|
||||
#if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__))
|
||||
#if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__) || defined(__DragonFly__))
|
||||
#define MI_TLS_RECURSE_GUARD
|
||||
#endif
|
||||
|
||||
|
@ -42,12 +42,17 @@ void _mi_trace_message(const char* fmt, ...);
|
|||
void _mi_options_init(void);
|
||||
void _mi_fatal_error(const char* fmt, ...) mi_attr_noreturn;
|
||||
|
||||
// "init.c"
|
||||
// random.c
|
||||
void _mi_random_init(mi_random_ctx_t* ctx);
|
||||
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx);
|
||||
uintptr_t _mi_random_next(mi_random_ctx_t* ctx);
|
||||
uintptr_t _mi_heap_random_next(mi_heap_t* heap);
|
||||
static inline uintptr_t _mi_random_shuffle(uintptr_t x);
|
||||
|
||||
// init.c
|
||||
extern mi_stats_t _mi_stats_main;
|
||||
extern const mi_page_t _mi_page_empty;
|
||||
bool _mi_is_main_thread(void);
|
||||
uintptr_t _mi_random_shuffle(uintptr_t x);
|
||||
uintptr_t _mi_random_init(uintptr_t seed /* can be zero */);
|
||||
bool _mi_preloading(); // true while the C runtime is not ready
|
||||
|
||||
// os.c
|
||||
|
@ -86,8 +91,9 @@ void _mi_page_unfull(mi_page_t* page);
|
|||
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
|
||||
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
|
||||
void _mi_heap_delayed_free(mi_heap_t* heap);
|
||||
void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
|
||||
|
||||
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay);
|
||||
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
|
||||
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
|
||||
void _mi_deferred_free(mi_heap_t* heap, bool force);
|
||||
|
||||
|
@ -101,7 +107,6 @@ uint8_t _mi_bsr(uintptr_t x); // bit-scan-right, used on BSD i
|
|||
// "heap.c"
|
||||
void _mi_heap_destroy_pages(mi_heap_t* heap);
|
||||
void _mi_heap_collect_abandon(mi_heap_t* heap);
|
||||
uintptr_t _mi_heap_random(mi_heap_t* heap);
|
||||
void _mi_heap_set_default_direct(mi_heap_t* heap);
|
||||
|
||||
// "stats.c"
|
||||
|
@ -236,7 +241,7 @@ extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate
|
|||
|
||||
static inline mi_heap_t* mi_get_default_heap(void) {
|
||||
#ifdef MI_TLS_RECURSE_GUARD
|
||||
// on some platforms, like macOS, the dynamic loader calls `malloc`
|
||||
// on some BSD platforms, like macOS, the dynamic loader calls `malloc`
|
||||
// to initialize thread local data. To avoid recursion, we need to avoid
|
||||
// accessing the thread local `_mi_default_heap` until our module is loaded
|
||||
// and use the statically allocated main heap until that time.
|
||||
|
@ -406,12 +411,30 @@ static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
|
|||
}
|
||||
|
||||
|
||||
// -------------------------------------------------------------------
|
||||
// Encoding/Decoding the free list next pointers
|
||||
// Note: we pass a `null` value to be used as the `NULL` value for the
|
||||
// end of a free list. This is to prevent the cookie itself to ever
|
||||
// be present among user blocks (as `cookie^0==cookie`).
|
||||
// -------------------------------------------------------------------
|
||||
/* -------------------------------------------------------------------
|
||||
Encoding/Decoding the free list next pointers
|
||||
|
||||
This is to protect against buffer overflow exploits where the
|
||||
free list is mutated. Many hardened allocators xor the next pointer `p`
|
||||
with a secret key `k1`, as `p^k1`. This prevents overwriting with known
|
||||
values but might be still too weak: if the attacker can guess
|
||||
the pointer `p` this can reveal `k1` (since `p^k1^p == k1`).
|
||||
Moreover, if multiple blocks can be read as well, the attacker can
|
||||
xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot
|
||||
about the pointers (and subsequently `k1`).
|
||||
|
||||
Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`.
|
||||
Since these operations are not associative, the above approaches do not
|
||||
work so well any more even if the `p` can be guesstimated. For example,
|
||||
for the read case we can subtract two entries to discard the `+k1` term,
|
||||
but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best.
|
||||
We include the left-rotation since xor and addition are otherwise linear
|
||||
in the lowest bit. Finally, both keys are unique per page which reduces
|
||||
the re-use of keys by a large factor.
|
||||
|
||||
We also pass a separate `null` value to be used as `NULL` or otherwise
|
||||
`(k2<<<k1)+k1` would appear (too) often as a sentinel value.
|
||||
------------------------------------------------------------------- */
|
||||
|
||||
static inline bool mi_is_in_same_segment(const void* p, const void* q) {
|
||||
return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
|
||||
|
@ -423,52 +446,84 @@ static inline bool mi_is_in_same_page(const void* p, const void* q) {
|
|||
return (_mi_segment_page_of(segment, p) == _mi_segment_page_of(segment, q));
|
||||
}
|
||||
|
||||
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, uintptr_t cookie ) {
|
||||
static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) {
|
||||
shift %= MI_INTPTR_BITS;
|
||||
return ((x << shift) | (x >> (MI_INTPTR_BITS - shift)));
|
||||
}
|
||||
static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
|
||||
shift %= MI_INTPTR_BITS;
|
||||
return ((x >> shift) | (x << (MI_INTPTR_BITS - shift)));
|
||||
}
|
||||
|
||||
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, uintptr_t key1, uintptr_t key2 ) {
|
||||
#ifdef MI_ENCODE_FREELIST
|
||||
mi_block_t* b = (mi_block_t*)(block->next ^ cookie);
|
||||
mi_block_t* b = (mi_block_t*)(mi_rotr(block->next - key1, key1) ^ key2);
|
||||
if (mi_unlikely((void*)b==null)) { b = NULL; }
|
||||
return b;
|
||||
#else
|
||||
UNUSED(cookie); UNUSED(null);
|
||||
UNUSED(key1); UNUSED(key2); UNUSED(null);
|
||||
return (mi_block_t*)block->next;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, uintptr_t cookie) {
|
||||
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, uintptr_t key1, uintptr_t key2) {
|
||||
#ifdef MI_ENCODE_FREELIST
|
||||
if (mi_unlikely(next==NULL)) { next = (mi_block_t*)null; }
|
||||
block->next = (mi_encoded_t)next ^ cookie;
|
||||
block->next = mi_rotl((uintptr_t)next ^ key2, key1) + key1;
|
||||
#else
|
||||
UNUSED(cookie); UNUSED(null);
|
||||
UNUSED(key1); UNUSED(key2); UNUSED(null);
|
||||
block->next = (mi_encoded_t)next;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
|
||||
#ifdef MI_ENCODE_FREELIST
|
||||
mi_block_t* next = mi_block_nextx(page,block,page->cookie);
|
||||
// check for free list corruption: is `next` at least in our segment range?
|
||||
mi_block_t* next = mi_block_nextx(page,block,page->key[0],page->key[1]);
|
||||
// check for free list corruption: is `next` at least in the same page?
|
||||
// TODO: check if `next` is `page->block_size` aligned?
|
||||
if (next!=NULL && !mi_is_in_same_page(block, next)) {
|
||||
if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) {
|
||||
_mi_fatal_error("corrupted free list entry of size %zub at %p: value 0x%zx\n", page->block_size, block, (uintptr_t)next);
|
||||
next = NULL;
|
||||
}
|
||||
return next;
|
||||
#else
|
||||
UNUSED(page);
|
||||
return mi_block_nextx(page,block,0);
|
||||
return mi_block_nextx(page,block,0,0);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
|
||||
#ifdef MI_ENCODE_FREELIST
|
||||
mi_block_set_nextx(page,block,next, page->cookie);
|
||||
mi_block_set_nextx(page,block,next, page->key[0], page->key[1]);
|
||||
#else
|
||||
UNUSED(page);
|
||||
mi_block_set_nextx(page,block, next,0);
|
||||
mi_block_set_nextx(page,block, next,0,0);
|
||||
#endif
|
||||
}
|
||||
|
||||
// -------------------------------------------------------------------
|
||||
// Fast "random" shuffle
|
||||
// -------------------------------------------------------------------
|
||||
|
||||
static inline uintptr_t _mi_random_shuffle(uintptr_t x) {
|
||||
if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros
|
||||
#if (MI_INTPTR_SIZE==8)
|
||||
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
|
||||
x ^= x >> 30;
|
||||
x *= 0xbf58476d1ce4e5b9UL;
|
||||
x ^= x >> 27;
|
||||
x *= 0x94d049bb133111ebUL;
|
||||
x ^= x >> 31;
|
||||
#elif (MI_INTPTR_SIZE==4)
|
||||
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
|
||||
x ^= x >> 16;
|
||||
x *= 0x7feb352dUL;
|
||||
x ^= x >> 15;
|
||||
x *= 0x846ca68bUL;
|
||||
x ^= x >> 16;
|
||||
#endif
|
||||
return x;
|
||||
}
|
||||
|
||||
// -------------------------------------------------------------------
|
||||
// Optimize numa node access for the common case (= one node)
|
||||
|
|
|
@ -46,7 +46,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
|||
|
||||
// Encoded free lists allow detection of corrupted free lists
|
||||
// and can detect buffer overflows and double `free`s.
|
||||
#if (MI_SECURE>=3 || MI_DEBUG>=1)
|
||||
#if (MI_SECURE>=3 || MI_DEBUG>=1)
|
||||
#define MI_ENCODE_FREELIST 1
|
||||
#endif
|
||||
|
||||
|
@ -76,7 +76,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
|||
#endif
|
||||
|
||||
#define MI_INTPTR_SIZE (1<<MI_INTPTR_SHIFT)
|
||||
#define MI_INTPTR_BITS (8*MI_INTPTR_SIZE)
|
||||
#define MI_INTPTR_BITS (MI_INTPTR_SIZE*8)
|
||||
|
||||
#define KiB ((size_t)1024)
|
||||
#define MiB (KiB*KiB)
|
||||
|
@ -112,6 +112,8 @@ terms of the MIT license. A copy of the license can be found in the file
|
|||
#define MI_LARGE_OBJ_SIZE_MAX (MI_SEGMENT_SIZE/2) // 32mb on 64-bit
|
||||
#define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX/MI_INTPTR_SIZE)
|
||||
|
||||
#define MI_HUGE_OBJ_SIZE_MAX (2*MI_INTPTR_SIZE*MI_SEGMENT_SIZE) // (must match MI_REGION_MAX_ALLOC_SIZE in memory.c)
|
||||
|
||||
// Minimal alignment necessary. On most platforms 16 bytes are needed
|
||||
// due to SSE registers for example. This must be at least `MI_INTPTR_SIZE`
|
||||
#define MI_MAX_ALIGN_SIZE 16 // sizeof(max_align_t)
|
||||
|
@ -145,14 +147,14 @@ typedef enum mi_delayed_e {
|
|||
} mi_delayed_t;
|
||||
|
||||
|
||||
// The `in_full` and `has_aligned` page flags are put in a union to efficiently
|
||||
// The `in_full` and `has_aligned` page flags are put in a union to efficiently
|
||||
// test if both are false (`full_aligned == 0`) in the `mi_free` routine.
|
||||
typedef union mi_page_flags_s {
|
||||
uint8_t full_aligned;
|
||||
struct {
|
||||
uint8_t in_full : 1;
|
||||
uint8_t has_aligned : 1;
|
||||
} x;
|
||||
} x;
|
||||
} mi_page_flags_t;
|
||||
|
||||
// Thread free list.
|
||||
|
@ -189,11 +191,12 @@ typedef struct mi_page_s {
|
|||
uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear`
|
||||
uint16_t reserved; // number of blocks reserved in memory
|
||||
mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits)
|
||||
bool is_zero; // `true` if the blocks in the free list are zero initialized
|
||||
uint8_t is_zero:1; // `true` if the blocks in the free list are zero initialized
|
||||
uint8_t retire_expire:7; // expiration count for retired blocks
|
||||
|
||||
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
|
||||
#ifdef MI_ENCODE_FREELIST
|
||||
uintptr_t cookie; // random cookie to encode the free lists
|
||||
uintptr_t key[2]; // two random keys to encode the free lists (see `_mi_block_next`)
|
||||
#endif
|
||||
size_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
|
||||
|
||||
|
@ -208,9 +211,9 @@ typedef struct mi_page_s {
|
|||
struct mi_page_s* prev; // previous page owned by this thread with the same `block_size`
|
||||
|
||||
// improve page index calculation
|
||||
// without padding: 11 words on 64-bit, 13 on 32-bit.
|
||||
#ifndef MI_ENCODE_FREELIST
|
||||
void* padding[1]; // 12 words on 64-bit, 14 words on 32-bit
|
||||
// without padding: 10 words on 64-bit, 11 on 32-bit. Secure adds two words
|
||||
#if (MI_INTPTR_SIZE==4)
|
||||
void* padding[1]; // 12/14 words on 32-bit plain
|
||||
#endif
|
||||
} mi_page_t;
|
||||
|
||||
|
@ -253,8 +256,8 @@ typedef struct mi_segment_s {
|
|||
uintptr_t commit_mask;
|
||||
|
||||
// from here is zero initialized
|
||||
struct mi_segment_s* next; // the list of freed segments in the cache
|
||||
volatile _Atomic(struct mi_segment_s*) abandoned_next;
|
||||
struct mi_segment_s* next; // the list of freed segments in the cache
|
||||
struct mi_segment_s* abandoned_next;
|
||||
|
||||
size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
|
||||
size_t used; // count of pages in use
|
||||
|
@ -296,6 +299,14 @@ typedef struct mi_page_queue_s {
|
|||
|
||||
#define MI_BIN_FULL (MI_BIN_HUGE+1)
|
||||
|
||||
// Random context
|
||||
typedef struct mi_random_cxt_s {
|
||||
uint32_t input[16];
|
||||
uint32_t output[16];
|
||||
int output_available;
|
||||
} mi_random_ctx_t;
|
||||
|
||||
|
||||
// A heap owns a set of pages.
|
||||
struct mi_heap_s {
|
||||
mi_tld_t* tld;
|
||||
|
@ -303,8 +314,9 @@ struct mi_heap_s {
|
|||
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
|
||||
volatile _Atomic(mi_block_t*) thread_delayed_free;
|
||||
uintptr_t thread_id; // thread this heap belongs too
|
||||
uintptr_t cookie;
|
||||
uintptr_t random; // random number used for secure allocation
|
||||
uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`)
|
||||
uintptr_t key[2]; // twb random keys used to encode the `thread_delayed_free` list
|
||||
mi_random_ctx_t random; // random number context used for secure allocation
|
||||
size_t page_count; // total number of pages in the `pages` queues.
|
||||
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
|
||||
};
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue