merge from dev

This commit is contained in:
daan 2020-01-20 19:06:08 -08:00
commit 394a7a92ab
92 changed files with 2994 additions and 1010 deletions

View file

@ -22,7 +22,7 @@ terms of the MIT license. A copy of the license can be found in the file
// Fast allocation in a page: just pop from the free list.
// Fall back to generic allocation only if the list is empty.
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept {
mi_assert_internal(page->block_size==0||page->block_size >= size);
mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
mi_block_t* block = page->free;
if (mi_unlikely(block == NULL)) {
return _mi_malloc_generic(heap, size); // slow path
@ -92,18 +92,18 @@ extern inline mi_decl_allocator void* mi_malloc(size_t size) mi_attr_noexcept {
void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) {
// note: we need to initialize the whole block to zero, not just size
// or the recalloc/rezalloc functions cannot safely expand in place (see issue #63)
UNUSED(size);
UNUSED_RELEASE(size);
mi_assert_internal(p != NULL);
mi_assert_internal(size > 0 && page->block_size >= size);
mi_assert_internal(mi_page_block_size(page) >= size); // size can be zero
mi_assert_internal(_mi_ptr_page(p)==page);
if (page->is_zero) {
// already zero initialized memory?
((mi_block_t*)p)->next = 0; // clear the free list pointer
mi_assert_expensive(mi_mem_is_zero(p,page->block_size));
mi_assert_expensive(mi_mem_is_zero(p, mi_page_block_size(page)));
}
else {
// otherwise memset
memset(p, 0, page->block_size);
memset(p, 0, mi_page_block_size(page));
}
}
@ -142,12 +142,11 @@ static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, cons
static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
// The decoded value is in the same page (or NULL).
// Walk the free lists to verify positively if it is already freed
mi_thread_free_t tf = (mi_thread_free_t)mi_atomic_read_relaxed(mi_atomic_cast(uintptr_t, &page->thread_free));
if (mi_list_contains(page, page->free, block) ||
mi_list_contains(page, page->local_free, block) ||
mi_list_contains(page, mi_tf_block(tf), block))
mi_list_contains(page, mi_page_thread_free(page), block))
{
_mi_fatal_error("double free detected of block %p with size %zu\n", block, page->block_size);
_mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
return true;
}
return false;
@ -177,39 +176,50 @@ static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block
// Free
// ------------------------------------------------------
// free huge block from another thread
static mi_decl_noinline void mi_free_huge_block_mt(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) {
// huge page segments are always abandoned and can be freed immediately
mi_assert_internal(segment->kind==MI_SEGMENT_HUGE);
mi_assert_internal(segment == _mi_page_segment(page));
mi_assert_internal(mi_atomic_read_relaxed(&segment->thread_id)==0);
// claim it and free
mi_heap_t* heap = mi_get_default_heap();
// paranoia: if this it the last reference, the cas should always succeed
if (mi_atomic_cas_strong(&segment->thread_id, heap->thread_id, 0)) {
mi_block_set_next(page, block, page->free);
page->free = block;
page->used--;
page->is_zero = false;
mi_assert(page->used == 0);
mi_tld_t* tld = heap->tld;
const size_t bsize = mi_page_block_size(page);
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
_mi_stat_decrease(&tld->stats.large, bsize);
}
else {
_mi_stat_decrease(&tld->stats.huge, bsize);
}
_mi_segment_page_free(page, true, &tld->segments);
}
}
// multi-threaded free
static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
{
mi_thread_free_t tfree;
mi_thread_free_t tfreex;
bool use_delayed;
// huge page segments are always abandoned and can be freed immediately
mi_segment_t* segment = _mi_page_segment(page);
if (segment->kind==MI_SEGMENT_HUGE) {
// huge page segments are always abandoned and can be freed immediately
mi_assert_internal(mi_atomic_read_relaxed(&segment->thread_id)==0);
mi_assert_internal(mi_atomic_read_ptr_relaxed(mi_atomic_cast(void*,&segment->abandoned_next))==NULL);
// claim it and free
mi_heap_t* heap = mi_get_default_heap();
// paranoia: if this it the last reference, the cas should always succeed
if (mi_atomic_cas_strong(&segment->thread_id,heap->thread_id,0)) {
mi_block_set_next(page, block, page->free);
page->free = block;
page->used--;
page->is_zero = false;
mi_assert(page->used == 0);
mi_tld_t* tld = heap->tld;
_mi_stat_decrease(&tld->stats.huge, page->block_size);
_mi_segment_page_free(page,true,&tld->segments);
}
mi_free_huge_block_mt(segment, page, block);
return;
}
mi_thread_free_t tfree;
mi_thread_free_t tfreex;
bool use_delayed;
do {
tfree = page->thread_free;
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE ||
(mi_tf_delayed(tfree) == MI_NO_DELAYED_FREE && page->used == mi_atomic_read_relaxed(&page->thread_freed)+1) // data-race but ok, just optimizes early release of the page
);
tfree = mi_atomic_read_relaxed(&page->xthread_free);
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
if (mi_unlikely(use_delayed)) {
// unlikely: this only happens on the first concurrent free in a page that is in the full list
tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
@ -219,15 +229,11 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
mi_block_set_next(page, block, mi_tf_block(tfree));
tfreex = mi_tf_set_block(tfree,block);
}
} while (!mi_atomic_cas_weak(mi_atomic_cast(uintptr_t,&page->thread_free), tfreex, tfree));
} while (!mi_atomic_cas_weak(&page->xthread_free, tfreex, tfree));
if (mi_likely(!use_delayed)) {
// increment the thread free count and return
mi_atomic_increment(&page->thread_freed);
}
else {
if (mi_unlikely(use_delayed)) {
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
mi_heap_t* heap = (mi_heap_t*)mi_atomic_read_ptr(mi_atomic_cast(void*, &page->heap));
mi_heap_t* heap = mi_page_heap(page);
mi_assert_internal(heap != NULL);
if (heap != NULL) {
// add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
@ -240,10 +246,10 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
// and reset the MI_DELAYED_FREEING flag
do {
tfreex = tfree = page->thread_free;
mi_assert_internal(mi_tf_delayed(tfree) == MI_NEVER_DELAYED_FREE || mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
if (mi_tf_delayed(tfree) != MI_NEVER_DELAYED_FREE) tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
} while (!mi_atomic_cas_weak(mi_atomic_cast(uintptr_t,&page->thread_free), tfreex, tfree));
tfreex = tfree = mi_atomic_read_relaxed(&page->xthread_free);
mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
} while (!mi_atomic_cas_weak(&page->xthread_free, tfreex, tfree));
}
}
@ -252,7 +258,7 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
{
#if (MI_DEBUG)
memset(block, MI_DEBUG_FREED, page->block_size);
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
#endif
// and push it on the free list
@ -279,7 +285,7 @@ static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
mi_assert_internal(page!=NULL && p!=NULL);
size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
size_t adjust = (diff % page->block_size);
size_t adjust = (diff % mi_page_block_size(page));
return (mi_block_t*)((uintptr_t)p - adjust);
}
@ -294,7 +300,7 @@ void mi_free(void* p) mi_attr_noexcept
{
#if (MI_DEBUG>0)
if (mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0)) {
_mi_error_message("trying to free an invalid (unaligned) pointer: %p\n", p);
_mi_error_message(EINVAL, "trying to free an invalid (unaligned) pointer: %p\n", p);
return;
}
#endif
@ -304,16 +310,16 @@ void mi_free(void* p) mi_attr_noexcept
#if (MI_DEBUG!=0)
if (mi_unlikely(!mi_is_in_heap_region(p))) {
_mi_warning_message("possibly trying to free a pointer that does not point to a valid heap region: 0x%p\n"
_mi_warning_message("possibly trying to free a pointer that does not point to a valid heap region: %p\n"
"(this may still be a valid very large allocation (over 64MiB))\n", p);
if (mi_likely(_mi_ptr_cookie(segment) == segment->cookie)) {
_mi_warning_message("(yes, the previous pointer 0x%p was valid after all)\n", p);
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
}
}
#endif
#if (MI_DEBUG!=0 || MI_SECURE>=4)
if (mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie)) {
_mi_error_message("trying to free a pointer that does not point to a valid heap space: %p\n", p);
_mi_error_message(EINVAL, "trying to free a pointer that does not point to a valid heap space: %p\n", p);
return;
}
#endif
@ -324,8 +330,8 @@ void mi_free(void* p) mi_attr_noexcept
#if (MI_STAT>1)
mi_heap_t* heap = mi_heap_get_default();
mi_heap_stat_decrease(heap, malloc, mi_usable_size(p));
if (page->block_size <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, normal[_mi_bin(page->block_size)], 1);
if (page->xblock_size <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, normal[_mi_bin(page->xblock_size)], 1);
}
// huge page stat is accounted for in `_mi_page_retire`
#endif
@ -337,7 +343,9 @@ void mi_free(void* p) mi_attr_noexcept
mi_block_set_next(page, block, page->local_free);
page->local_free = block;
page->used--;
if (mi_unlikely(mi_page_all_free(page))) { _mi_page_retire(page); }
if (mi_unlikely(mi_page_all_free(page))) {
_mi_page_retire(page);
}
}
else {
// non-local, aligned blocks, or a full page; use the more generic path
@ -351,13 +359,19 @@ bool _mi_free_delayed_block(mi_block_t* block) {
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(_mi_thread_id() == segment->thread_id);
mi_page_t* page = _mi_segment_page_of(segment, block);
if (mi_tf_delayed(page->thread_free) == MI_DELAYED_FREEING) {
// we might already start delayed freeing while another thread has not yet
// reset the delayed_freeing flag; in that case don't free it quite yet if
// this is the last block remaining.
if (page->used - page->thread_freed == 1) return false;
}
_mi_free_block(page,true,block);
// Clear the no-delayed flag so delayed freeing is used again for this page.
// This must be done before collecting the free lists on this page -- otherwise
// some blocks may end up in the page `thread_free` list with no blocks in the
// heap `thread_delayed_free` list which may cause the page to be never freed!
// (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
_mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */);
// collect all other non-local frees to ensure up-to-date `used` count
_mi_page_free_collect(page, false);
// and free the block (possibly freeing the page as well since used is updated)
_mi_free_block(page, true, block);
return true;
}
@ -366,7 +380,7 @@ size_t mi_usable_size(const void* p) mi_attr_noexcept {
if (p==NULL) return 0;
const mi_segment_t* segment = _mi_ptr_segment(p);
const mi_page_t* page = _mi_segment_page_of(segment,p);
size_t size = page->block_size;
size_t size = mi_page_block_size(page);
if (mi_unlikely(mi_page_has_aligned(page))) {
ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)_mi_page_ptr_unalign(segment,page,p);
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
@ -418,7 +432,7 @@ void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
extern inline mi_decl_allocator void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count,size,&total)) return NULL;
if (mi_count_size_overflow(count,size,&total)) return NULL;
return mi_heap_zalloc(heap,total);
}
@ -429,7 +443,7 @@ mi_decl_allocator void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
// Uninitialized `calloc`
extern mi_decl_allocator void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count,size,&total)) return NULL;
if (mi_count_size_overflow(count, size, &total)) return NULL;
return mi_heap_malloc(heap, total);
}
@ -470,7 +484,7 @@ mi_decl_allocator void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize
mi_decl_allocator void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count, size, &total)) return NULL;
if (mi_count_size_overflow(count, size, &total)) return NULL;
return mi_heap_realloc(heap, p, total);
}
@ -488,7 +502,7 @@ mi_decl_allocator void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsiz
mi_decl_allocator void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
size_t total;
if (mi_mul_overflow(count, size, &total)) return NULL;
if (mi_count_size_overflow(count, size, &total)) return NULL;
return mi_heap_rezalloc(heap, p, total);
}
@ -556,7 +570,6 @@ char* mi_strndup(const char* s, size_t n) mi_attr_noexcept {
#define PATH_MAX MAX_PATH
#endif
#include <windows.h>
#include <errno.h>
char* mi_heap_realpath(mi_heap_t* heap, const char* fname, char* resolved_name) mi_attr_noexcept {
// todo: use GetFullPathNameW to allow longer file names
char buf[PATH_MAX];
@ -631,10 +644,6 @@ static bool mi_try_new_handler(bool nothrow) {
}
}
#else
#include <errno.h>
#ifndef ENOMEM
#define ENOMEM 12
#endif
typedef void (*std_new_handler_t)();
#if (defined(__GNUC__) || defined(__clang__))
@ -654,7 +663,7 @@ std_new_handler_t mi_get_new_handler() {
static bool mi_try_new_handler(bool nothrow) {
std_new_handler_t h = mi_get_new_handler();
if (h==NULL) {
if (!nothrow) exit(ENOMEM);
if (!nothrow) exit(ENOMEM); // cannot throw in plain C, use exit as we are out of memory anyway.
return false;
}
else {
@ -664,36 +673,70 @@ static bool mi_try_new_handler(bool nothrow) {
}
#endif
static mi_decl_noinline void* mi_try_new(size_t n, bool nothrow ) {
static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow ) {
void* p = NULL;
while(p == NULL && mi_try_new_handler(nothrow)) {
p = mi_malloc(n);
p = mi_malloc(size);
}
return p;
}
void* mi_new(size_t n) {
void* p = mi_malloc(n);
if (mi_unlikely(p == NULL)) return mi_try_new(n,false);
void* mi_new(size_t size) {
void* p = mi_malloc(size);
if (mi_unlikely(p == NULL)) return mi_try_new(size,false);
return p;
}
void* mi_new_aligned(size_t n, size_t alignment) {
void* mi_new_nothrow(size_t size) {
void* p = mi_malloc(size);
if (mi_unlikely(p == NULL)) return mi_try_new(size, true);
return p;
}
void* mi_new_aligned(size_t size, size_t alignment) {
void* p;
do { p = mi_malloc_aligned(n, alignment); }
do {
p = mi_malloc_aligned(size, alignment);
}
while(p == NULL && mi_try_new_handler(false));
return p;
}
void* mi_new_nothrow(size_t n) {
void* p = mi_malloc(n);
if (mi_unlikely(p == NULL)) return mi_try_new(n,true);
void* mi_new_aligned_nothrow(size_t size, size_t alignment) {
void* p;
do {
p = mi_malloc_aligned(size, alignment);
}
while(p == NULL && mi_try_new_handler(true));
return p;
}
void* mi_new_aligned_nothrow(size_t n, size_t alignment) {
void* p;
do { p = mi_malloc_aligned(n, alignment); }
while (p == NULL && mi_try_new_handler(true));
return p;
void* mi_new_n(size_t count, size_t size) {
size_t total;
if (mi_unlikely(mi_count_size_overflow(count, size, &total))) {
mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
return NULL;
}
else {
return mi_new(total);
}
}
void* mi_new_realloc(void* p, size_t newsize) {
void* q;
do {
q = mi_realloc(p, newsize);
} while (q == NULL && mi_try_new_handler(false));
return q;
}
void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
size_t total;
if (mi_unlikely(mi_count_size_overflow(newcount, size, &total))) {
mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
return NULL;
}
else {
return mi_new_realloc(p, total);
}
}