Initial commit of separate memory region layer and improved large OS pages support, see 'memory.c'

This commit is contained in:
daan 2019-07-02 07:23:24 -07:00
parent d6901558cd
commit 06bcea1761
18 changed files with 693 additions and 297 deletions

321
src/os.c
View file

@ -12,7 +12,6 @@ terms of the MIT license. A copy of the license can be found in the file
#include "mimalloc-internal.h"
#include <string.h> // memset
#include <stdio.h> // debug fprintf
#include <errno.h>
/* -----------------------------------------------------------
@ -28,15 +27,37 @@ terms of the MIT license. A copy of the license can be found in the file
#include <unistd.h> // sysconf
#endif
// page size (initialized properly in `os_init`)
static size_t os_page_size = 4096;
// minimal allocation granularity
static size_t os_alloc_granularity = 4096;
// if non-zero, use large page allocation
static size_t large_os_page_size = 0;
// OS (small) page size
size_t _mi_os_page_size() {
return os_page_size;
}
// if large OS pages are supported (2 or 4MiB), then return the size, otherwise return the small page size (4KiB)
size_t _mi_os_large_page_size() {
return (large_os_page_size != 0 ? large_os_page_size : _mi_os_page_size());
}
static bool use_large_os_page(size_t size, size_t alignment) {
// if we have access, check the size and alignment requirements
if (large_os_page_size == 0) return false;
return ((size % large_os_page_size) == 0 && (alignment % large_os_page_size) == 0);
}
// round to a good allocation size
static size_t mi_os_good_alloc_size(size_t size, size_t alignment) {
UNUSED(alignment);
if (size >= (SIZE_MAX - os_alloc_granularity)) return size; // possible overflow?
return _mi_align_up(size, os_alloc_granularity);
}
#if defined(_WIN32)
// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
@ -45,11 +66,17 @@ typedef PVOID (*VirtualAlloc2Ptr)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MEM_EXTEN
static VirtualAlloc2Ptr pVirtualAlloc2 = NULL;
void _mi_os_init(void) {
// Try to get the VirtualAlloc2 function (only supported on Windows 10 and Windows Server 2016)
// get the page size
SYSTEM_INFO si;
GetSystemInfo(&si);
if (si.dwPageSize > 0) os_page_size = si.dwPageSize;
if (si.dwAllocationGranularity > 0) os_alloc_granularity = si.dwAllocationGranularity;
// get the VirtualAlloc2 function
HINSTANCE hDll;
hDll = LoadLibrary("kernelbase.dll");
if (hDll!=NULL) {
pVirtualAlloc2 = (VirtualAlloc2Ptr)GetProcAddress(hDll, "VirtualAlloc2");
// use VirtualAlloc2FromApp as it is available to Windows store apps
pVirtualAlloc2 = (VirtualAlloc2Ptr)GetProcAddress(hDll, "VirtualAlloc2FromApp");
FreeLibrary(hDll);
}
// Try to see if large OS pages are supported
@ -86,8 +113,15 @@ void _mi_os_init(void) {
}
#else
void _mi_os_init() {
// nothing to do
use_large_os_page(0, 0); // dummy call to suppress warnings
// get the page size
long result = sysconf(_SC_PAGESIZE);
if (result > 0) {
os_page_size = (size_t)result;
os_alloc_granularity = os_page_size;
}
if (mi_option_is_enabled(mi_option_large_os_pages)) {
large_os_page_size = (1UL<<21); // 2MiB
}
}
#endif
@ -116,26 +150,8 @@ static void* mi_align_down_ptr(void* p, size_t alignment) {
return (void*)_mi_align_down((uintptr_t)p, alignment);
}
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld);
// cached OS page size
size_t _mi_os_page_size(void) {
static size_t page_size = 0;
if (page_size == 0) {
#if defined(_WIN32)
SYSTEM_INFO si;
GetSystemInfo(&si);
page_size = (si.dwPageSize > 0 ? si.dwPageSize : 4096);
#else
long result = sysconf(_SC_PAGESIZE);
page_size = (result > 0 ? (size_t)result : 4096);
#endif
}
return page_size;
}
static bool mi_munmap(void* addr, size_t size)
static bool mi_os_mem_free(void* addr, size_t size, mi_stats_t* stats)
{
if (addr == NULL || size == 0) return true;
bool err = false;
@ -144,6 +160,8 @@ static bool mi_munmap(void* addr, size_t size)
#else
err = (munmap(addr, size) == -1);
#endif
_mi_stat_decrease(&stats->committed, size); // TODO: what if never committed?
_mi_stat_decrease(&stats->reserved, size);
if (err) {
#pragma warning(suppress:4996)
_mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size);
@ -154,16 +172,18 @@ static bool mi_munmap(void* addr, size_t size)
}
}
static void* mi_mmap(void* addr, size_t size, int extra_flags, mi_stats_t* stats) {
static void* mi_os_mem_alloc(void* addr, size_t size, bool commit, int extra_flags, mi_stats_t* stats) {
UNUSED(stats);
if (size == 0) return NULL;
void* p = NULL;
#if defined(_WIN32)
int flags = MEM_RESERVE | extra_flags;
if (commit) flags |= MEM_COMMIT;
if (use_large_os_page(size, 0)) {
p = VirtualAlloc(addr, size, MEM_LARGE_PAGES | MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE);
p = VirtualAlloc(addr, size, MEM_LARGE_PAGES | flags, PAGE_READWRITE);
}
if (p == NULL) {
p = VirtualAlloc(addr, size, MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE);
p = VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}
#else
#if !defined(MAP_ANONYMOUS)
@ -179,19 +199,43 @@ static void* mi_mmap(void* addr, size_t size, int extra_flags, mi_stats_t* stats
flags |= MAP_FIXED;
#endif
}
p = mmap(addr, size, (PROT_READ | PROT_WRITE), flags, -1, 0);
if (p == MAP_FAILED) p = NULL;
if (large_os_page_size > 0 && use_large_os_page(size, 0) && ((uintptr_t)addr % large_os_page_size) == 0) {
int lflags = flags;
#ifdef MAP_ALIGNED_SUPER
lflags |= MAP_ALIGNED_SUPER;
#endif
#ifdef MAP_HUGETLB
lflags |= MAP_HUGETLB;
#endif
#ifdef MAP_HUGE_2MB
lflags |= MAP_HUGE_2MB;
#endif
if (lflags != flags) {
// try large page allocation
p = mmap(addr, size, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE), lflags, -1, 0);
if (p == MAP_FAILED) p = NULL;
}
}
if (p == NULL) {
p = mmap(addr, size, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE), flags, -1, 0);
if (p == MAP_FAILED) p = NULL;
}
if (addr != NULL && p != addr) {
mi_munmap(p, size);
mi_os_mem_free(p, size, stats);
p = NULL;
}
#endif
UNUSED(stats);
mi_assert(p == NULL || (addr == NULL && p != addr) || (addr != NULL && p == addr));
if (p != NULL) mi_stat_increase(stats->mmap_calls, 1);
if (p != NULL) {
mi_stat_increase(stats->mmap_calls, 1);
mi_stat_increase(stats->reserved, size);
if (commit) mi_stat_increase(stats->committed, size);
}
return p;
}
static void* mi_mmap_aligned(size_t size, size_t alignment, mi_stats_t* stats) {
static void* mi_os_mem_alloc_aligned(size_t size, size_t alignment, bool commit, mi_stats_t* stats) {
if (alignment < _mi_os_page_size() || ((alignment & (~alignment + 1)) != alignment)) return NULL;
void* p = NULL;
#if defined(_WIN32) && defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
@ -202,27 +246,33 @@ static void* mi_mmap_aligned(size_t size, size_t alignment, mi_stats_t* stats) {
MEM_EXTENDED_PARAMETER param = { 0 };
param.Type = MemExtendedParameterAddressRequirements;
param.Pointer = &reqs;
DWORD extra_flags = 0;
if (use_large_os_page(size, alignment)) extra_flags |= MEM_LARGE_PAGES;
p = (*pVirtualAlloc2)(NULL, NULL, size, MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE, &param, 1);
DWORD flags = MEM_RESERVE;
if (commit) flags |= MEM_COMMIT;
if (use_large_os_page(size, alignment)) flags |= MEM_LARGE_PAGES;
p = (*pVirtualAlloc2)(NULL, NULL, size, flags, PAGE_READWRITE, &param, 1);
}
#elif defined(MAP_ALIGNED)
// on BSD, use the aligned mmap api
size_t n = _mi_bsr(alignment);
if ((size_t)1 << n == alignment && n >= 12) { // alignment is a power of 2 and >= 4096
p = mi_mmap(suggest, size, MAP_ALIGNED(n), tld->stats); // use the NetBSD/freeBSD aligned flags
if (((size_t)1 << n) == alignment && n >= 12) { // alignment is a power of 2 and >= 4096
p = mi_os_mem_alloc(suggest, size, commit, MAP_ALIGNED(n), tld->stats); // use the NetBSD/freeBSD aligned flags
}
#else
UNUSED(size);
UNUSED(alignment);
#endif
UNUSED(stats); // if !STATS
mi_assert(p == NULL || (uintptr_t)p % alignment == 0);
if (p != NULL) mi_stat_increase(stats->mmap_calls, 1);
if (p != NULL) {
mi_stat_increase(stats->mmap_calls, 1);
mi_stat_increase(stats->reserved, size);
if (commit) mi_stat_increase(stats->committed, size);
}
return p;
}
static void* mi_os_page_align_region(void* addr, size_t size, size_t* newsize) {
// Conservatively OS page align within a given area
static void* mi_os_page_align_area(void* addr, size_t size, size_t* newsize) {
mi_assert(addr != NULL && size > 0);
if (newsize != NULL) *newsize = 0;
if (size == 0 || addr == NULL) return NULL;
@ -242,16 +292,31 @@ static void* mi_os_page_align_region(void* addr, size_t size, size_t* newsize) {
// but may be used later again. This will release physical memory
// pages and reduce swapping while keeping the memory committed.
// We page align to a conservative area inside the range to reset.
bool _mi_os_reset(void* addr, size_t size) {
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* stats) {
// page align conservatively within the range
size_t csize;
void* start = mi_os_page_align_region(addr,size,&csize);
void* start = mi_os_page_align_area(addr,size,&csize);
if (csize==0) return true;
UNUSED(stats); // if !STATS
mi_stat_increase(stats->reset, csize);
#if defined(_WIN32)
// Testing shows that for us (on `malloc-large`) MEM_RESET is 2x faster than DiscardVirtualMemory
// (but this is for an access pattern that immediately reuses the memory)
/*
DWORD ok = DiscardVirtualMemory(start, csize);
return (ok != 0);
*/
void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
mi_assert(p == start);
return (p == start);
if (p != start) return false;
/*
// VirtualUnlock removes the memory eagerly from the current working set (which MEM_RESET does lazily on demand)
// TODO: put this behind an option?
DWORD ok = VirtualUnlock(start, csize);
if (ok != 0) return false;
*/
return true;
#else
#if defined(MADV_FREE)
static int advice = MADV_FREE;
@ -276,19 +341,19 @@ bool _mi_os_reset(void* addr, size_t size) {
static bool mi_os_protectx(void* addr, size_t size, bool protect) {
// page align conservatively within the range
size_t csize = 0;
void* start = mi_os_page_align_region(addr, size, &csize);
void* start = mi_os_page_align_area(addr, size, &csize);
if (csize==0) return false;
int err = 0;
#ifdef _WIN32
DWORD oldprotect = 0;
BOOL ok = VirtualProtect(start,csize,protect ? PAGE_NOACCESS : PAGE_READWRITE,&oldprotect);
err = (ok ? 0 : -1);
err = (ok ? 0 : GetLastError());
#else
err = mprotect(start,csize,protect ? PROT_NONE : (PROT_READ|PROT_WRITE));
#endif
if (err != 0) {
_mi_warning_message("mprotect error: start: 0x%8p, csize: 0x%8zux, errno: %i\n", start, csize, errno);
_mi_warning_message("mprotect error: start: 0x%8p, csize: 0x%8zux, err: %i\n", start, csize, err);
}
return (err==0);
}
@ -301,24 +366,48 @@ bool _mi_os_unprotect(void* addr, size_t size) {
return mi_os_protectx(addr, size, false);
}
bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize) {
// Commit/Decommit memory.
// We page align to a conservative area inside the range to reset.
static bool mi_os_commitx(void* addr, size_t size, bool commit, mi_stats_t* stats) {
// page align conservatively within the range
mi_assert_internal(oldsize > newsize && p != NULL);
if (oldsize < newsize || p==NULL) return false;
if (oldsize == newsize) return true;
size_t csize;
void* start = mi_os_page_align_area(addr, size, &csize);
if (csize == 0) return true;
int err = 0;
UNUSED(stats); // if !STATS
if (commit) {
mi_stat_increase(stats->committed, csize);
mi_stat_increase(stats->commit_calls,1);
}
else {
mi_stat_decrease(stats->committed, csize);
}
// oldsize and newsize should be page aligned or we cannot shrink precisely
void* addr = (uint8_t*)p + newsize;
size_t size = 0;
void* start = mi_os_page_align_region(addr, oldsize - newsize, &size);
if (size==0 || start != addr) return false;
#ifdef _WIN32
// we cannot shrink on windows
return false;
#else
return mi_munmap( start, size );
#endif
#if defined(_WIN32)
if (commit) {
void* p = VirtualAlloc(start, csize, MEM_COMMIT, PAGE_READWRITE);
err = (p == start ? 0 : GetLastError());
}
else {
BOOL ok = VirtualFree(start, csize, MEM_DECOMMIT);
err = (ok ? 0 : GetLastError());
}
#else
err = mprotect(start, csize, (commit ? (PROT_READ | PROT_WRITE) : PROT_NONE));
#endif
if (err != 0) {
_mi_warning_message("commit/decommit error: start: 0x%8p, csize: 0x%8zux, err: %i\n", start, csize, err);
}
mi_assert_internal(err == 0);
return (err == 0);
}
bool _mi_os_commit(void* addr, size_t size, mi_stats_t* stats) {
return mi_os_commitx(addr, size, true, stats);
}
bool _mi_os_decommit(void* addr, size_t size, mi_stats_t* stats) {
return mi_os_commitx(addr, size, false, stats);
}
/* -----------------------------------------------------------
@ -327,22 +416,21 @@ bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize) {
void* _mi_os_alloc(size_t size, mi_stats_t* stats) {
if (size == 0) return NULL;
void* p = mi_mmap(NULL, size, 0, stats);
size = mi_os_good_alloc_size(size, 0);
void* p = mi_os_mem_alloc(NULL, size, true, 0, stats);
mi_assert(p!=NULL);
if (p != NULL) mi_stat_increase(stats->reserved, size);
return p;
}
void _mi_os_free(void* p, size_t size, mi_stats_t* stats) {
UNUSED(stats);
mi_munmap(p, size);
mi_stat_decrease(stats->reserved, size);
mi_os_mem_free(p, size, stats);
}
// Slow but guaranteed way to allocated aligned memory
// by over-allocating and then reallocating at a fixed aligned
// address that should be available then.
static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t trie, mi_stats_t* stats)
static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, bool commit, size_t trie, mi_stats_t* stats)
{
if (trie >= 3) return NULL; // stop recursion (only on Windows)
size_t alloc_size = size + alignment;
@ -350,28 +438,28 @@ static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t t
if (alloc_size < size) return NULL;
// allocate a chunk that includes the alignment
void* p = mi_mmap(NULL, alloc_size, 0, stats);
void* p = mi_os_mem_alloc(NULL, alloc_size, commit, 0, stats);
if (p == NULL) return NULL;
// create an aligned pointer in the allocated area
void* aligned_p = mi_align_up_ptr(p, alignment);
mi_assert(aligned_p != NULL);
#if defined(_WIN32)
// free it and try to allocate `size` at exactly `aligned_p`
// note: this may fail in case another thread happens to VirtualAlloc
// note: this may fail in case another thread happens to allocate
// concurrently at that spot. We try up to 3 times to mitigate this.
mi_munmap(p, alloc_size);
p = mi_mmap(aligned_p, size, 0, stats);
mi_os_mem_free(p, alloc_size, stats);
p = mi_os_mem_alloc(aligned_p, size, commit, 0, stats);
if (p != aligned_p) {
if (p != NULL) mi_munmap(p, size);
return mi_os_alloc_aligned_ensured(size, alignment, trie++, stats);
if (p != NULL) mi_os_mem_free(p, size, stats);
return mi_os_alloc_aligned_ensured(size, alignment, commit, trie++, stats);
}
#else
#if 0 // could use this on mmap systems
// we selectively unmap parts around the over-allocated area.
size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p;
size_t mid_size = _mi_align_up(size, _mi_os_page_size());
size_t post_size = alloc_size - pre_size - mid_size;
if (pre_size > 0) mi_munmap(p, pre_size);
if (post_size > 0) mi_munmap((uint8_t*)aligned_p + mid_size, post_size);
if (pre_size > 0) mi_os_mem_free(p, pre_size, stats);
if (post_size > 0) mi_os_mem_free((uint8_t*)aligned_p + mid_size, post_size, stats);
#endif
mi_assert(((uintptr_t)aligned_p) % alignment == 0);
@ -382,22 +470,21 @@ static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t t
// Since `mi_mmap` is relatively slow we try to allocate directly at first and
// hope to get an aligned address; only when that fails we fall back
// to a guaranteed method by overallocating at first and adjusting.
// TODO: use VirtualAlloc2 with alignment on Windows 10 / Windows Server 2016.
void* _mi_os_alloc_aligned(size_t size, size_t alignment, mi_os_tld_t* tld)
void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, mi_os_tld_t* tld)
{
if (size == 0) return NULL;
if (alignment < 1024) return _mi_os_alloc(size, tld->stats);
void* p = os_pool_alloc(size,alignment,tld);
if (p != NULL) return p;
size = mi_os_good_alloc_size(size,alignment);
if (alignment < 1024) return mi_os_mem_alloc(NULL, size, commit, 0, tld->stats);
// try direct OS aligned allocation; only supported on BSD and Windows 10+
void* suggest = NULL;
void* p = mi_os_mem_alloc_aligned(size,alignment,commit,tld->stats);
p = mi_mmap_aligned(size,alignment,tld->stats);
// Fall back
if (p==NULL && (tld->mmap_next_probable % alignment) == 0) {
// if the next probable address is aligned,
// then try to just allocate `size` and hope it is aligned...
p = mi_mmap(suggest, size, 0, tld->stats);
p = mi_os_mem_alloc(suggest, size, commit, 0, tld->stats);
if (p == NULL) return NULL;
if (((uintptr_t)p % alignment) == 0) mi_stat_increase(tld->stats->mmap_right_align, 1);
}
@ -406,75 +493,23 @@ void* _mi_os_alloc_aligned(size_t size, size_t alignment, mi_os_tld_t* tld)
if (p==NULL || ((uintptr_t)p % alignment) != 0) {
// if `p` is not yet aligned after all, free the block and use a slower
// but guaranteed way to allocate an aligned block
if (p != NULL) mi_munmap(p, size);
if (p != NULL) mi_os_mem_free(p, size, tld->stats);
mi_stat_increase( tld->stats->mmap_ensure_aligned, 1);
//fprintf(stderr, "mimalloc: slow mmap 0x%lx\n", _mi_thread_id());
p = mi_os_alloc_aligned_ensured(size, alignment,0,tld->stats);
p = mi_os_alloc_aligned_ensured(size, alignment,commit,0,tld->stats);
}
if (p != NULL) {
mi_stat_increase( tld->stats->reserved, size);
// next probable address is the page-aligned address just after the newly allocated area.
const size_t alloc_align =
#if defined(_WIN32)
64 * 1024; // Windows allocates 64kb aligned
#else
_mi_os_page_size(); // page size on other OS's
#endif
if (p != NULL) {
// next probable address is the page-aligned address just after the newly allocated area.
size_t probable_size = MI_SEGMENT_SIZE;
if (tld->mmap_previous > p) {
// Linux tends to allocate downward
tld->mmap_next_probable = _mi_align_down((uintptr_t)p - probable_size, alloc_align); // ((uintptr_t)previous - (uintptr_t)p);
tld->mmap_next_probable = _mi_align_down((uintptr_t)p - probable_size, os_alloc_granularity); // ((uintptr_t)previous - (uintptr_t)p);
}
else {
// Otherwise, guess the next address is page aligned `size` from current pointer
tld->mmap_next_probable = _mi_align_up((uintptr_t)p + probable_size, alloc_align);
tld->mmap_next_probable = _mi_align_up((uintptr_t)p + probable_size, os_alloc_granularity);
}
tld->mmap_previous = p;
}
return p;
}
// Pooled allocation: on 64-bit systems with plenty
// of virtual addresses, we allocate 10 segments at the
// time to minimize `mmap` calls and increase aligned
// allocations. This is only good on systems that
// do overcommit so we put it behind the `MIMALLOC_POOL_COMMIT` option.
// For now, we disable it on windows as VirtualFree must
// be called on the original allocation and cannot be called
// for individual fragments.
#if defined(_WIN32) || (MI_INTPTR_SIZE<8)
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld) {
UNUSED(size);
UNUSED(alignment);
UNUSED(tld);
return NULL;
}
#else
#define MI_POOL_ALIGNMENT MI_SEGMENT_SIZE
#define MI_POOL_SIZE (10*MI_POOL_ALIGNMENT)
static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld)
{
if (!mi_option_is_enabled(mi_option_pool_commit)) return NULL;
if (alignment != MI_POOL_ALIGNMENT) return NULL;
size = _mi_align_up(size,MI_POOL_ALIGNMENT);
if (size > MI_POOL_SIZE) return NULL;
if (tld->pool_available == 0) {
tld->pool = (uint8_t*)mi_os_alloc_aligned_ensured(MI_POOL_SIZE,MI_POOL_ALIGNMENT,0,tld->stats);
if (tld->pool == NULL) return NULL;
tld->pool_available += MI_POOL_SIZE;
}
if (size > tld->pool_available) return NULL;
void* p = tld->pool;
tld->pool_available -= size;
tld->pool += size;
return p;
}
#endif