mirror of
https://github.com/microsoft/mimalloc.git
synced 2025-07-07 11:58:41 +03:00
first working tls on macOS using interpose; still slow
This commit is contained in:
parent
b3dae128de
commit
03b363a1c2
9 changed files with 155 additions and 120 deletions
34
src/random.c
34
src/random.c
|
@ -11,7 +11,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
|||
|
||||
/* ----------------------------------------------------------------------------
|
||||
We use our own PRNG to keep predictable performance of random number generation
|
||||
and to avoid implementations that use a lock. We only use the OS provided
|
||||
and to avoid implementations that use a lock. We only use the OS provided
|
||||
random source to initialize the initial seeds. Since we do not need ultimate
|
||||
performance but we do rely on the security (for secret cookies in secure mode)
|
||||
we use a cryptographically secure generator (chacha20).
|
||||
|
@ -21,11 +21,11 @@ we use a cryptographically secure generator (chacha20).
|
|||
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
Chacha20 implementation as the original algorithm with a 64-bit nonce
|
||||
Chacha20 implementation as the original algorithm with a 64-bit nonce
|
||||
and counter: https://en.wikipedia.org/wiki/Salsa20
|
||||
The input matrix has sixteen 32-bit values:
|
||||
Position 0 to 3: constant key
|
||||
Position 4 to 11: the key
|
||||
Position 4 to 11: the key
|
||||
Position 12 to 13: the counter.
|
||||
Position 14 to 15: the nonce.
|
||||
|
||||
|
@ -44,8 +44,8 @@ static inline void qround(uint32_t x[16], size_t a, size_t b, size_t c, size_t d
|
|||
x[c] += x[d]; x[b] = rotl(x[b] ^ x[c], 7);
|
||||
}
|
||||
|
||||
static void chacha_block(mi_random_ctx_t* ctx)
|
||||
{
|
||||
static void chacha_block(mi_random_ctx_t* ctx)
|
||||
{
|
||||
// scramble into `x`
|
||||
uint32_t x[16];
|
||||
for (size_t i = 0; i < 16; i++) {
|
||||
|
@ -72,8 +72,8 @@ static void chacha_block(mi_random_ctx_t* ctx)
|
|||
ctx->input[12] += 1;
|
||||
if (ctx->input[12] == 0) {
|
||||
ctx->input[13] += 1;
|
||||
if (ctx->input[13] == 0) { // and keep increasing into the nonce
|
||||
ctx->input[14] += 1;
|
||||
if (ctx->input[13] == 0) { // and keep increasing into the nonce
|
||||
ctx->input[14] += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -83,7 +83,7 @@ static uint32_t chacha_next32(mi_random_ctx_t* ctx) {
|
|||
chacha_block(ctx);
|
||||
ctx->output_available = 16; // (assign again to suppress static analysis warning)
|
||||
}
|
||||
const uint32_t x = ctx->output[16 - ctx->output_available];
|
||||
const uint32_t x = ctx->output[16 - ctx->output_available];
|
||||
ctx->output[16 - ctx->output_available] = 0; // reset once the data is handed out
|
||||
ctx->output_available--;
|
||||
return x;
|
||||
|
@ -94,9 +94,9 @@ static inline uint32_t read32(const uint8_t* p, size_t idx32) {
|
|||
return ((uint32_t)p[i+0] | (uint32_t)p[i+1] << 8 | (uint32_t)p[i+2] << 16 | (uint32_t)p[i+3] << 24);
|
||||
}
|
||||
|
||||
static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t nonce)
|
||||
static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t nonce)
|
||||
{
|
||||
// since we only use chacha for randomness (and not encryption) we
|
||||
// since we only use chacha for randomness (and not encryption) we
|
||||
// do not _need_ to read 32-bit values as little endian but we do anyways
|
||||
// just for being compatible :-)
|
||||
memset(ctx, 0, sizeof(*ctx));
|
||||
|
@ -110,7 +110,7 @@ static void chacha_init(mi_random_ctx_t* ctx, const uint8_t key[32], uint64_t no
|
|||
ctx->input[12] = 0;
|
||||
ctx->input[13] = 0;
|
||||
ctx->input[14] = (uint32_t)nonce;
|
||||
ctx->input[15] = (uint32_t)(nonce >> 32);
|
||||
ctx->input[15] = (uint32_t)(nonce >> 32);
|
||||
}
|
||||
|
||||
static void chacha_split(mi_random_ctx_t* ctx, uint64_t nonce, mi_random_ctx_t* ctx_new) {
|
||||
|
@ -184,7 +184,7 @@ static bool os_random_buf(void* buf, size_t buf_len) {
|
|||
arc4random_buf(buf, buf_len);
|
||||
return true;
|
||||
}
|
||||
#elif defined(__linux__)
|
||||
#elif defined(__linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/types.h>
|
||||
|
@ -241,8 +241,8 @@ static bool os_random_buf(void* buf, size_t buf_len) {
|
|||
#include <time.h>
|
||||
#endif
|
||||
|
||||
static uintptr_t os_random_weak(uintptr_t extra_seed) {
|
||||
uintptr_t x = (uintptr_t)&os_random_weak ^ extra_seed; // ASLR makes the address random
|
||||
uintptr_t _os_random_weak(uintptr_t extra_seed) {
|
||||
uintptr_t x = (uintptr_t)&_os_random_weak ^ extra_seed; // ASLR makes the address random
|
||||
#if defined(_WIN32)
|
||||
LARGE_INTEGER pcount;
|
||||
QueryPerformanceCounter(&pcount);
|
||||
|
@ -267,10 +267,10 @@ static uintptr_t os_random_weak(uintptr_t extra_seed) {
|
|||
void _mi_random_init(mi_random_ctx_t* ctx) {
|
||||
uint8_t key[32];
|
||||
if (!os_random_buf(key, sizeof(key))) {
|
||||
// if we fail to get random data from the OS, we fall back to a
|
||||
// if we fail to get random data from the OS, we fall back to a
|
||||
// weak random source based on the current time
|
||||
_mi_warning_message("unable to use secure randomness\n");
|
||||
uintptr_t x = os_random_weak(0);
|
||||
uintptr_t x = _os_random_weak(0);
|
||||
for (size_t i = 0; i < 8; i++) { // key is eight 32-bit words.
|
||||
x = _mi_random_shuffle(x);
|
||||
((uint32_t*)key)[i] = (uint32_t)x;
|
||||
|
@ -280,7 +280,7 @@ void _mi_random_init(mi_random_ctx_t* ctx) {
|
|||
}
|
||||
|
||||
/* --------------------------------------------------------
|
||||
test vectors from <https://tools.ietf.org/html/rfc8439>
|
||||
test vectors from <https://tools.ietf.org/html/rfc8439>
|
||||
----------------------------------------------------------- */
|
||||
/*
|
||||
static bool array_equals(uint32_t* x, uint32_t* y, size_t n) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue