This commit is contained in:
daanx 2024-12-16 09:51:54 -08:00
parent d2f670e6e5
commit 037cb167f8
2 changed files with 17 additions and 14 deletions

View file

@ -100,7 +100,7 @@ terms of the MIT license. A copy of the license can be found in the file
// Sizes are for 64-bit
#ifndef MI_ARENA_SLICE_SHIFT
#ifdef MI_SMALL_PAGE_SHIFT // compatibility
#ifdef MI_SMALL_PAGE_SHIFT // backward compatibility
#define MI_ARENA_SLICE_SHIFT MI_SMALL_PAGE_SHIFT
#else
#define MI_ARENA_SLICE_SHIFT (13 + MI_SIZE_SHIFT) // 64 KiB (32 KiB on 32-bit)
@ -149,7 +149,7 @@ typedef struct mi_arena_s mi_arena_t; // defined in `arena.c`
// a memory id tracks the provenance of arena/OS allocated memory
// ---------------------------------------------------------------
// Memory can reside in arena's, direct OS allocated, meta-data pages, or statically allocated.
// Memory can reside in arena's, direct OS allocated, meta-data pages, or statically allocated.
// The memid keeps track of this.
typedef enum mi_memkind_e {
MI_MEM_NONE, // not allocated
@ -264,7 +264,7 @@ typedef uint8_t mi_heaptag_t;
//
// We don't count `freed` (as |free|) but use `used` to reduce
// the number of memory accesses in the `mi_page_all_free` function(s).
//
//
// Notes:
// - Non-atomic fields can only be accessed if having ownership (low bit of `xthread_free`).
// - If a page is not part of a heap it is called "abandoned" -- in
@ -310,7 +310,7 @@ typedef struct mi_page_s {
#define MI_PAGE_ALIGN MI_ARENA_SLICE_ALIGN // pages must be aligned on this for the page map.
#define MI_PAGE_MIN_START_BLOCK_ALIGN MI_MAX_ALIGN_SIZE // minimal block alignment for the first block in a page (16b)
#define MI_PAGE_MAX_START_BLOCK_ALIGN2 MI_KiB // maximal block alignment for "power of 2"-sized blocks
#define MI_PAGE_MAX_START_BLOCK_ALIGN2 MI_KiB // maximal block alignment for "power of 2"-sized blocks
#define MI_PAGE_MAX_OVERALLOC_ALIGN MI_ARENA_SLICE_SIZE // (64 KiB) limit for which we overallocate in arena pages, beyond this use OS allocation
#if (MI_ENCODE_FREELIST || MI_PADDING) && MI_SIZE_SIZE == 8
@ -348,12 +348,12 @@ typedef enum mi_page_kind_e {
// ------------------------------------------------------
// Heaps
//
//
// Provide first-class heaps to allocate from.
// A heap just owns a set of pages for allocation and
// can only be allocate/reallocate from the thread that created it.
// Freeing blocks can be done from any thread though.
//
//
// Per thread, there is always a default heap that is
// used for allocation; it is initialized to statically
// point to an empty heap to avoid initialization checks

View file

@ -883,7 +883,7 @@ static bool mi_bchunk_bsr(mi_bchunk_t* chunk, size_t* pidx) {
static void mi_bitmap_chunkmap_set(mi_bitmap_t* bitmap, size_t chunk_idx) {
mi_assert(chunk_idx < mi_bitmap_chunk_count(bitmap));
mi_bchunk_set(&bitmap->chunkmap, chunk_idx);
mi_bchunk_set(&bitmap->chunkmap, chunk_idx);
}
static bool mi_bitmap_chunkmap_try_clear(mi_bitmap_t* bitmap, size_t chunk_idx) {
@ -937,12 +937,12 @@ size_t mi_bitmap_init(mi_bitmap_t* bitmap, size_t bit_count, bool already_zero)
// Set a sequence of `n` bits in the bitmap (and can cross chunks). Not atomic so only use if local to a thread.
static void mi_bchunks_unsafe_setN(mi_bchunk_t* chunks, mi_bchunkmap_t* cmap, size_t idx, size_t n) {
mi_assert_internal(n>0);
// start chunk and index
size_t chunk_idx = idx / MI_BCHUNK_BITS;
const size_t cidx = idx % MI_BCHUNK_BITS;
const size_t ccount = _mi_divide_up(n, MI_BCHUNK_BITS);
// first update the chunkmap
mi_bchunk_setN(cmap, chunk_idx, ccount, NULL);
@ -1433,6 +1433,9 @@ typedef bool (mi_bchunk_try_find_and_clear_fun_t)(mi_bchunk_t* chunk, size_t n,
// Go through the bbitmap and for every sequence of `n` set bits, call the visitor function.
// If it returns `true` stop the search.
//
// This is used for finding free blocks and it is important to be efficient (with 2-level bitscan)
// but also reduce fragmentation (through size bins).
static inline bool mi_bbitmap_try_find_and_clear_generic(mi_bbitmap_t* bbitmap, size_t tseq, size_t n, size_t* pidx, mi_bchunk_try_find_and_clear_fun_t* on_find)
{
// we space out threads to reduce contention
@ -1453,8 +1456,8 @@ static inline bool mi_bbitmap_try_find_and_clear_generic(mi_bbitmap_t* bbitmap,
mi_bfield_cycle_iterate(cmap_mask, tseq, cmap_cycle, cmap_idx, X)
{
// don't search into non-accessed memory until we tried other size bins as well
if (bin > MI_BBIN_SMALL && cmap_idx > cmap_acc) {
break;
if (bin > MI_BBIN_SMALL && cmap_idx > cmap_acc) {
break;
}
// and for each chunkmap entry we iterate over its bits to find the chunks
@ -1466,8 +1469,8 @@ static inline bool mi_bbitmap_try_find_and_clear_generic(mi_bbitmap_t* bbitmap,
const size_t chunk_idx = cmap_idx*MI_BFIELD_BITS + eidx;
mi_assert_internal(chunk_idx < mi_bbitmap_chunk_count(bbitmap));
// only in the current size class!
const mi_bbin_t chunk_bin = (mi_bbin_t)mi_atomic_load_acquire(&bbitmap->chunk_bins[chunk_idx]);
if // (bin >= chunk_bin) {
const mi_bbin_t chunk_bin = (mi_bbin_t)mi_atomic_load_relaxed(&bbitmap->chunk_bins[chunk_idx]);
if // (bin >= chunk_bin) {
((mi_bbin_t)bin == chunk_bin || (bin <= MI_BBIN_SMALL && chunk_bin <= MI_BBIN_SMALL)) {
mi_bchunk_t* chunk = &bbitmap->chunks[chunk_idx];
size_t cidx;
@ -1482,7 +1485,7 @@ static inline bool mi_bbitmap_try_find_and_clear_generic(mi_bbitmap_t* bbitmap,
}
else {
/* we may find that all are cleared only on a second iteration but that is ok as the chunkmap is a conservative approximation. */
mi_bbitmap_chunkmap_try_clear(bbitmap, chunk_idx);
mi_bbitmap_chunkmap_try_clear(bbitmap, chunk_idx);
}
}
}